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The primary objective of this paper is to study time-spectral method for simulating
helicopter rotor flows in steady flight. The intent is to compare the accuracy of pre-
dicted vibratory loads (both airloads and structural loads) with time-accurate computa-
tions and quantify the aliasing error and convergence behavior in a precise manner. The
CFD/Comprehensive Analysis coupling method in this paper is different from the state-
of-the-art. We implement an exact fluid-structure interface for rotors and formulate a
modified delta coupling procedure, that is generic for advanced geometry blades, underly-
ing structural models, and unstructured surface grids. The Counter 8534 flight from the
U. S. Army/NASA Airloads Program, the highest vibration flight of this helicopter, is
used for validation. The fastest and minimal implementation of the method, with 11 time
instances for a 4-bladed rotor, predicts the vibratory normal forces and pitching moments
within 5–10% accuracy with respect to time-accurate simulations in about one-fifth the
computational time. The largest errors occur in vibratory chord forces (10 to 20%). This
level of error generates un-satisfactory levels of error in structural loads. However, the
primary source of error is aliasing, which for this flight decreases asymptotically with an
increasing number of time instances. We demonstrate an accuracy level of 1% and 0.1%
in airloads with 17 and 25 time instances respectively. These correspond to one-third and
one-half the computational time of a time-accurate solution. It is concluded that time-
spectral method in CFD can be used effectively for the prediction of rotor vibratory loads.
However, without any anti-aliasing filter, reliable prediction of structural loads requires a
number of time instances at least four times the blade number – still at one-third the time,
approximately, compared to a time-accurate solution.

I. INTRODUCTION

Spectral methods have been widely used for the different types of the problems in fluid dynamics that
are governed by the partial differential equations with periodic boundary conditions. They can be distin-
guished by the class of the method (Galerkin, collocation, or tau) or by the type of the trial/basis functions
(trigonometric polynomials, Chebychev polynomials and Legendre polynomials).1

A time-spectral method in this paper is standard algorithm based on the Fourier collocation method,
where the periodic solution at each Fourier node (grid point or time instance in the time domain) is approx-
imated by a discrete Fourier expansion. The key idea of the time-spectral method is to apply the Fourier
spectral method to the temporal discretization rather than to the conventional spatial discretization.

A number of engineering problems which involve the unsteady periodic motions have already used time-
spectral method, such as the areas of turbomachinery,2 flapping wing analysis,3 micro air vehicle, etc. An
application of time-spectral method to the helicopter rotor flow analysis has been conducted in our previous
∗Research Associate
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work4–6 for the steady-level flight conditions of the UH-60A Black Hawk helicopter - high speed 8534, low
speed 8513/8515, and stall case 9017.

The main advantage of the spectral method is high-order accuracy it achieves compared to the finite
difference method. A spectral accuracy can be obtained when the number of harmonics larger than Nyquist
frequency is included for a solution approximation, and it has proven to be equivalent to the accuracy
of the infinite-order finite difference method.7 With much smaller number of Fourier nodes the method
demonstrates higher than or as good accuracy as that of the finite difference mehod.1

Another advantage of the spectral method is that Fourier collocation differentiation can be represented by
a simple form of matrix (instead of applying FFT both in time and frequency domains). Thus, if the matrix
form of Fouier collocation differentiation is applied to the time derivative term in the governing equations,
then the formulation becomes periodic steady-state in time domain and the solution procedure becomes
independent of time evolution. This fact is appreciated to a large extent in the case of turbomachinery
simulation where initial transient time to reach periodic steady-state is considerable, but rotor flows typically
take less time to reach periodic steady-state solutions (∼1/4 of a period).

The characteristic related to the steady-state formulation brings the time-spectral method a high potential
to be used for a design optimization framework for the unsteady periodic problems. A number of design
optimization procedure require sensitivity information of the functionals (or objective functions) and a state-
of-the-art gradient computation procedure, such as the adjoint solution method,9,10 can be enormously cost-
intensive in both time and memory for the unsteady problems.11,12 However, the steady-state formulation
of the time-spectral method make the steady adjoint solution formulation leveraged in the unsteady design
optimization problems. Although the design optimization is not a focus of the present paper, a research on
that aspect is on-going6 and the current work on the validation of the time-spectral method for the helicopter
rotor flow analysis is essential for the reliability of design optimization.

However, since the time-spectral method is based on the Fourier collocation method, it inherently contains
the error behaviors of the classical Fourier spectral method; truncation error and aliasing error. The accuracy
of the time-spectral method is greatly dependent on the number of Fourier modes we include for a solution
approximation. At the same time, the time-spectral method is a global scheme requiring the solutions at
all grid points in time during the solution procedure, and the inclusion of larger number of time instances
improves the accuracy at a spectral convergence rate, but unavoidably incurs increase in computational
expense and thus deteriorate the efficiency of the time-spectral method.

A rigorous study on the effects of the number of time instances on the accuracy, the convergence of the
solution, and computational time savings has not been provided and these issues are closely related to the
aliasing error behaviors of the time-spectral method.

One of the main purposes of our study is to precisely quantify the amount of aliasing errors in helicopter
rotor flow analysis with respect to the varying numbers of time instances and to determine how many number
of time instances are necessary to provide an acceptable accuracy at a computational cost less than that of
time-accurate method, such as finite-difference method.

This study has a practical importance when it comes to the prediction of the rotor vibratory loads,
the dominant frequency content of which typically consists of lower-harmonics, and the application of the
time-spectral method makes particularly attractive. However a precise prediction of rotor vibratory loads
requires accurate elastic deformation data which are obtained from CFD/CA (Comprehensive Analysis)
coupling method through iterative solution procedure.

Our previous time-spectral computation for the rotor flow analysis has been limited to the particular trim
conditions which were fixed through the entire simulation with elastic deformations prescribed by the data
obtained from else where (the existing data obtained from time-accurate computation based CFD coupled
with CA). Thus, the capability of the TS method to couple with a structural or comprehensive analysis code
has not been studied in a rigorous sense.

Another purpose of this study is to investigate whether time-spectral method can be used for CFD/CA
coupling procedure. The efficiency of TS method can make the coupling process less time consuming than
the conventional time accurate computation coupled with CSD codes. The second part of this paper will
elaborate the fluid-structure interface implementation using both conventional and exact coupling procedure.

The prediction of vibratory loads in helicopter rotors require, in addition to CFD and CSD, a solu-
tion procedure for simultaneously determining the rotor operating state. The operating state is deter-
mined by the vehicle flight dynamics (VFD) – trajectory and control pitch angles. A procedure for coupled
CFD/CSD/VFD in steady flight was proposed by Tung et al. in 1986.16 It is widely applied today and is
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well-known as delta or loose coupling procedure. There are no procedures, yet, for unsteady maneuvers. In
steady flight, VFD is simple: the trajectory is trivial, and the control angles are determined by the coupled
trim condition. The delta or loose coupling procedure is implied in rotorcraft literature by the frequent
use of the term CFD/Comprehensive Analysis. Though used interchangeably with CFD/CSD, it implies an
analysis which uses both the CSD and trim models of current comprehensive codes, while replacing its lower
order lifting-line (or surface) aerodynamic model with CFD. The solution procedure is iterative, and ensures
strict time accuracy of response harmonics via trim iterations. It is therefore not the same as loose coupling
as referred to in fixed-wing CFD/CSD. While the solution procedure is unique, the fluid-structure interface
has been simple, so far, based on chord-wise integrated sectional airloads. A review of the state-of-the-art
in rotorcraft CFD/CSD can be found in Ref.15

The coupling procedure in this paper is different from the state-of-the-art. An exact fluid-structure
interface is implemented in this study – different from a conventional, sectional airloads based interface. An
exact interface provides key advantages over the conventional. First, it is essential for advanced geometry
blades, an example of which is the BERP blade, for which the method of sectional airloads is arbitrary.
Second, the exact method is generic and applicable to both structured and unstructured fluid grids, including
on-blade adaptive refinement. Third, the convention is not limited to beams, but is easily extendable to
other structural models that include chordwise distortions or 3D geometry.

In the present interface, the blade is not excited by chord-wise integrated sectional airloads, the fluid
stresses or the locally integrated stresses on each surface patch are imposed directly on the structure. This
is accomplished easily by an exact calculation of virtual work. As such, the interface is conservative, and
preserves the spatial order of accuracy of the worse solver. In addition, it preserves the total forces between
the fluid and structural domains – a desirable, though not a necessary, condition. We call the interface
preservative. Implementing the interface is straight forward, but the unique solution procedure in rotary-
wing, based on the delta method,16 that ensures strict time-accuracy of the response harmonics, now requires
an innovative re-formulation. This is because there are no sectional delta airloads in an exact interface, and
any attempt to create one, even by a consistent interpolation on an unstructured surface grid, destroys the
exactness of the virtual work terms. In this paper, we provide a modification that implements the delta
procedure exactly – via a simple change in the definition of delta quantities – without any requirement for
a sectional calculation.

The paper is organized as follows. The theoretical background and the mathematical formulation of
the time-spectral method are described in Section II-A. In Section II-B, we provide a detailed study of the
accuracy, convergence and efficiency of the time-spectral method. Using uncoupled, CFD only calculations,
with a prescribed set of blade deformations, we precisely quantify the aliasing errors. The exact CFD/CA
coupling procedure is described in Section III along with a verification of the exact fluid-structure interface.
The fully coupled CFD/CA results the presented in the last section followed by conclusions of the study.

II. TIME-SPECTRAL METHOD

A. Mathematical Formulation

The Navier-Stokes equations in a semi-discrete form can be written as

V
∂u

∂t
+R(u) = 0, u =


ρ

ρu′

ρv′

ρw′

ρE

 , (1)

where u is the vector of conservative variables, and R(u) is the residual of spatial discretization of viscous,
inviscid, and numerical dissipation fluxes. If we approximate u by a discrete Fourier series at N integer
points,

uNj =
N/2−1∑
k=−N/2

ũke
iktj (j = 0, ..., N − 1), where tj =

T

N
j , (2)
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and T is a period, and uNj represents the truncated Fourier series of u up to N. A ũk is a discrete Fourier
coefficient of the variable u defined as follows,

ũk =
1
N

N−1∑
j=0

uNj e
−iktj k = −N/2, ..., N/2− 1 (3)

For the collocation method Equation 1 is required to be satisfied at each point,

∂uNj
∂t

+R(uNj )|t=tj , j = 0, 1, ..., N − 1 (4)

On the other hand, a differentiation of u in physical space can be obtained by the inverse transformation
of the discrete Fourier coefficients multiplied by ik. Then the approximate derivative at the grid points are
given by

(DNu)l =
N/2−1∑
k=−N/2

ake
iktl (l = 0, 1, ..., N − 1), where ak = ikũk =

ik

N

N−1∑
j=0

uNj e
−iktj (5)

Equation 5 can be reprented by a matrix form by combining two terms in Equation 5,

(DNu)l =
N−1∑
j=0

(DN )ljuNj , where (DN )lj =
1
N

N/2−1∑
k=−N/2

ikeik(tl−tj) (6)

Application of Fourier collocation derivative type operator to Equation 4 renders it as below,

DNU +R(U) = 0, where U is a vector form of (uN0 , u
N
1 , ..., u

N
N−1) (7)

If a pseudo-time derivative term is directly added for a time integration, then Equation 6 can be represented
as below,

V
∂uNj
∂τ

+ V DNu
N
j +R(uNj ) = 0 (j = 0, 1, 2, ..., N − 1) . (8)

and Equation 8 is the final form of the equation we are employing. Compared to the original Equation 1,
Equation 8 has a simpler form as a steady-state formulation. A matrix form of derivative operator can be
written as a closed form as below with a odd number of grid points (time instances),

(DN )lj =

{
1
2 (−1)l+jcosec( (l−j)π)

N ) : l 6= 0
0 : l = j .

(9)

This matrix is skew-symmetric and the corresponding eigenvalues are ik, k = −(N −1)/2, .., (N −1)/2, with
a odd number N. If we have a odd number of time instances, then eigenvalue of zero has single multiplicity
rather than double multiplicity in the case of even number of time instances. For this reason, we choose to
have a odd number of time instances for spectral formulation in our study for a stability issue related to the
eigenvalues.7

B. Convergence, Accuracy and Efficiency of Time-Spectral Method

The spectral accuracy is major attractiveness of the Fourier spectral method. Its convergence rate is ideally
faster than any negative power of N , if u is N -times continuously differentiable and their derivatives up to
N − 2 are periodic. For example, the accuracy of the 2nd order finite-difference method with N = 2048
becomes equivalent to that of the spectral method with N = 12 for the ideal case. If the band-width of
the underlying waveforms is known and the number of sampling points are more than double of the Nyquist
frequency, then spectral accuracy can be achieved.

However, the real waveforms we encounter in rotor flow analysis, such as the sectional airloads, are highly
nonlinear and not band-limited, smoothness of their variation in time is not guaranted, and the availability
of the differentiation is not known a priori. Therefore the time-spectral method we apply for the rotor
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flow analysis is inevitably under the influence of errors which are common to a classical Fourier collocation
method, i.e. truncation error and aliasing error.

A precise quantification of those errors greatly depend on the smoothness of the original waveform we
approximate and the periodicity of its derivatives. These errors are determined by the rate of decay of the
Fourier coefficients in the frequency domain. Aliasing errors arise from approximating the solution by the
discrete Fourier series rather than the continuous one, and the discrete Fourier mode at xk is the same as
at (k + Nm) nodes for any integer m, where k = −N/2, ..., N/2 − 1 for the even number of N. It is known
that if the function u is smooth, then the order of aliasing error is the same as the truncation error.7 If the
function is well approximated and smooth, then the effects of the aliasing errors becomes negligible.

Therefore the issues we would like to address before we apply the time-spectral method with enough
confidence to the real rotor simulation problem is that: With respect to a varying number of time instances,
1) how is the convergence of the solutions? 2) how accurate are the solutions? 3) how much of computational
time savings can we have to preserve a certain level of accuracy?

In response to these questions, we conducted straightforward numerical experiment to see the effects
of those errors on time-spectral simulation of rotor flows. Using well-resolved sectional airloads predicted
by the conventional time-accurate method and their corresponding discrete Fourier coefficients obtained by
DFFT (Discrete Fast Fourier Transform) of the original solutions, we attempted to reconstruct the aliased
solutions by including only a certain number of Fourier coefficients. The reconstructed aliased time-accurate
solutions are, then, compared with the time-spectral solutions with different number of time instances.

A Counter 8534 of the steady level flight of UH-60A configuration is simulated by both time-accurate and
time-spectral methods. A full wake capturing approach using an isolated rotor with 4 blades is employed.
For this parameter study, we use rather coarse grid with 2.4 million nodes, but all other computations later
are performed using a finer grid with about 17 million nodes. A conventional 2nd order BDF scheme with
a time step of 0.5 has been used to resolve the periodic solutions of rotor flows, although Figure 1 shows
time-accurate solutions at every 4o. A different number of time instances varying from 3, 5, 9, 11, 15, to 25
is used for time-spectral simulation. Figure 1, and 2 show the sectional pitching moment at 96.5 % radial
location. Figure 1 shows the time-spectral and time-accurate solutions, and their spectrally interpolated
solutions for the time-spectral computation are shown at Figure 2.
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Figure 1. Time-Spectral solution of predicted
pitching moment at 96.5% R using prescribed
deformations; high speed flight C8534 of UH-
60A
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Figure 2. Spectral reconstruction of predicted
pitching moment at 96.5% R using prescribed
deformations; high speed flight C8534 of UH-
60A

Waveform of the airloads we assume to be accurate or exact for comparison purpose is obtained from the
finite-difference computation with the time-step of 0.5 i.e., a total of 720 sample points. However, observing
that the higher harmonics of the frequency content are negligible, we include the harmonics only up to 44/rev
just for a simplicity of the numerical test. With this value of Nyquist frequency the exact reconstruction of
the original waveform requires a total of 88 sample points, i.e. two per wavelength, based on Nyquist Shanon
sampling theorem, and any waveform reconstructed with less number of sample points contain aliasing errors.

The quantification of the aliasing error is possible by considering an infinite number of mirror images
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centered at the integer multiple of the sampling rate. Figure 3 shows the the spectra of the original function
with Nyquist frequency of 44/rev and the mirror images corresponding to the the sampling rate of 11 that
is less than Nyquist sampling rate of 88. Instead of including an infinite number of mirror images ranging
(−∞ ∼ ∞), the most influential two mirror images are constructed to approximately quantify the aliasing
errors, which come from the frequencies in the images folding back into the spectrum of the original waveform.
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Figure 3. An example spectra plot of the Fourier coefficients of the original function and its mirror images
(pitching moments at 96.5% radial location with sampling rate of 11 below than the Nyquist rate of 88.)

In a similar way, a series of spectrum plots with mirror images are constructed corresponding to a different
number of sampling rates. To estimate the aliasing errors between the original waveform (which is assumed
to be exact with 88 sampling rate) and the reconstructed waveform with the sampling rate less than Nyquist
rate, we calculated L2 norm of the differences in magnitudes of the discrete Fourier coefficients between the
exact waveform and the aliased waveform. It is divided by the L2 norm of all Fourier coefficients of the
exact waveform so that it can represents the percentile error. This error criterion is basically equivalent to
measuring pointwise errors in the physical domain. These percentile L2 norms are plotted as the solid lines
at Figure 4.

For the time-spectral solutions, we simply computed the percentile L2 norm of the differences in the mag-
nitudes of discrete Fourier coefficients of the time-spectral solutions and the exact time-accurate solutions.
These L2 norm values are plotted as the symbols of square in Figure 4. Each symbol corresponds to the
different number of time instances varying from 3, 5, 9, 11, 13, 15 to 25. This analysis has been performed
for sectional pitching moment waveforms at raidal locations at 10, 55, 86.5 and 96.5 % and the comparison
of L2 norms between time-accurate and time-spectral solutions are shown at Figure 4.

We can infer from Figure 4 several significant facts related to the convergence and accuracy of the time-
specral method. First, the errors from time-spectral solutions with a varying number of time instances are
very close to the predicted errors by the aliased time-accurate solutions. In theory, the errors from time-
spectral and aliased time-accurate should be the same, however the amount of discrepancy is little. This
can be explained by the fact that we include only two most adjacent mirror images to quantify the aliasing
errors. The level of solution convergence in time-accurate and time-spectral solution may not exactly coincide.
Second, we can infer from the error behaviors of the aliased time-accurate solutions the characteristics of the
time-spectral solution on the accuracy and the convergence with respect to the number of time instances. As
the number of time instance increases, the norm of the errors between aliased and non-aliased time-accurate
solutions approaches to zero at a rate similar to the spectral convergence rate or exponential rate.

The key conclusions we can make on the convergence and accuracy of the time-spectral method are that:
1) the aliasing error decreases as we increase the number of time instances. 2) convergence rate is nearly
exponential as the number of time instances increases. 3) With the number of time instances as small as
around 20, we can achieve the accuracy within 1 ∼ 2% errors. Also this number of time instances can resolve
the phenomena dominated by the critical vibratory frequencies (3,4,5 /rev and 7,8,9 /rev).

However, it should be noted that this conclusion can not be generalized for all cases of rotor flow analysis.
The convergence and accuracy of the time-spectral method greatly depend on the characteristics of the
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airloads waveform. Therefore if the airloads do not show smooth variation during a period, then the effects
of the aliasing errors may not be negligible even with reasonably large number of time instances.
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Figure 4. L2 norm of the differences in magnitude of Fourier coefficients among aliased time-accurate, non-
aliased time-accurate, and time-spectral solutions.

The final question to be addressed is the efficiency of the time-spectral method that is closely related
to the accuracy of the method. Compared to the finite-difference method which typically requires around
hundreds or thousands of time steps per period, the time-spectral method needs a number of time instances
less than about twenty with the accuracy almost equivalent to that of the finite-difference method (see
Figure 4).

However, if higher accuracy with more number of time instances is desired, the increase in time and
memory is unavoidable. A wall-clock CPU time per multigrid cycle (3w in our case) with respect to a
different number of time instances is plotted at Figure 5. As the number of time instance increases, the time
increment is not linear and its slope is gradually increasing. A computation time for a multigrid cycle is the
addition of time for space discretization and for spectral derivative term (see Equation 8), and is typically
dominated by the space discretization which have operating counter of O(N) for the finite-difference method.
Thus, at a small number of time instances, computation time for the spectral derivative term is negligible
and increase in time is dominated mostly by linear contribution from space discretization. However, as the
number of time instances becomes large, computation time for the derivative term with operating counter of
O(N2) (of multiplication of matrix and vector) can not be neglected and the quadratic increase is gradually
reflected in total time.

A direct comparison of total wall-clock CPU time is made between time-accurate and time-spectral
computation to see the efficiency of the time-spectral method. A total wall-clock CPU time to obtain
the converged solutions is estimated for both computation methods. For time-accurate method using the
2nd order BDF scheme, a time step of about 0.25 ∼ 0.5o, pseudo time integration of about 20 ∼ 30
multigrid cycles, and time marching up to 1.5 ∼ 2 revolutions are required for the entire simulation. Time-
spectral method has shown to converge after 700 ∼ 1, 200 multigrid cycls for pseudo time integration.4

A total of 128 processors of IBM P4+ computer clusters are used. Time-spectral computation with a
total of 11 time instances takes about 15.65 seconds to complete one multigrid cycle and time-accurate
computation takes about 1.47 seconds per multigrid cycle. Thus the total estimated computation time for
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time-spectral simulation ranges in 15.65 sec × (700 ∼ 1500 iterations) = 10, 955 ∼ 23, 475 seconds. Time-
accurate simulation can be estimated as (1.5 ∼ 2)rev×360o/(0.25 ∼ 0.5o)deg×(20 ∼ 30)iterations×1.47sec =
(31, 752 ∼ 127, 008) seconds. Time saving factor between time-accurate and time-spectral computation for
this particular example varies between 2.9∼ 5.1.

The details of the computation procedure depends on the types of the problem we attempt to solve,
i.e. whether it requires a small number of time step size over a few number of revolutions, etc. A rigorous
comparison between the two methods, thus, requires a certain degree of flexibility considering the character-
istics of the problems we solve and the level of convergence we want to achieve. Nevertheless time-spectral
computation has shown more than the factor of at lease two or three for all simulations in our previous4,6

and the current simulation using up to as many as 25 time instances.

Figure 5. Wall clock time per one multigrid cycle w.r.t. the number of time instances varying from 3, 5, 13,
17 to 23.

C. Implementation: SUmb solver

Three-dimensional compressible Navier-Stokes flow solver, SUmb (Stanford University multi-block), has been
utilized for all computations in this paper. SUmb is a multi-block structured flow solver developed at Stan-
ford University under the sponsorship of the Department of Energy Advanced Strategic Computing (ASC)
program. Various turbulence models are implemented to capture the viscous and turbulent properties of
the flow: Baldwin-Lomax, Spalart-Allmaras, k − ω, Menter SST, v2 − f . SUmb is a massively parallel
code (in both CPU and memory) using scalable pre-processor, load balancing, and MPI. It employs multi-
grid, Runge-Kutta time stepping for the mean flow, and DD-ADI solution methodology for the turbulence
equations. Central difference discretization (second order in space) with several artificial dissipation options
(scalar or matrix), or upwind discretization is available for a space discretization. For unsteady time integra-
tion, second-/third-order backwards difference formula(BDF) or the time-spectral approach for time-periodic
flows can be used. SUmb has been successfully used in many applications including simulation of launch
vehicles, space and re-entry vehicles, jet/turbo engines, subsonic and supersonic aircraft, and helicopters. A
second order BDF scheme was used for the time-accurate computation, and a second order upwind scheme
with Roe’s flux differencing for the inviscid fluxes. Spalart-Allmaras turbulence model was used for the
computation of the viscous flux and the turbulence.

III. CFD/Comprehensive Analysis Coupling

This section describes the two key components of exact coupling. First, the formulation of an exact
interface is described, followed by a simple verification. Then, a modified delta coupling procedure is formu-
lated to accompany the exact interface. Validation of the exact coupling procedure using coupled CFD/CA
analysis is shown later in the section on Results.
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Figure 6. Blade cross-section and surface geometry before and after deformation

We note that the exact procedure includes two other requirements: exact deformation transfer to CFD,
in space and time; and exact airload transfer from CFD, in time. Both are easily implemented using the
spatial and temporal shape functions of the present CSD model, and is not part of the present discussion.

A. Exact Fluid-Structure Interface

An exact interface begins with a surface geometry representation followed by an exact virtual work calcula-
tion. In the case of a single component structure, like a rotor blade, the surface geometry is easily represented
using the underlying structural model.

Consider the undeformed blade surface geometry in Fig. 6(a). The surface point S is located at a cross-
section P on the undeformed beam elastic axis. Assume that the principle axes of the section lie along ξ2 and
ξ3 directions, at an angle θt with respect to an undeformed coordinate system. θt is the built-in structural
twist. If the undeformed coordinate system is defined by the unit orthogonal base vectors e0 = [ijk]T , then
the surface coordinates are given as

~rS =


x

ξ2 cos θt − ξ3 sin θt
ξ2 sin θt + ξ3 cos θt


T 

i

j

k

 (10)

where S = S(x, ξ2, ξ3) provides an unique surface parameterization. The section after deformation is shown
in Fig. 6(b), where S has now moved to S′. Let the deformed coordinate system is defined by the base
vectors ed = [iξ, jη, kζ ]T . The vectors jη and kζ are chosen along the principal axes of the deformed section
(as the structural properties are known about them), and the third is defined by

iξ = jη × kζ

The section undergoes translation and rotation but the position of S′ is defined uniquely by these defor-
mations and the surface parameters S(x, ξ2, ξ3). In the case of no cross-sectional distorsions, the surface
point S′ maintains the same relative position with respect to the principal axes, as illustrated in Fig. 6(b).
However, the convention here is extendable to generic models using chordwise distortions or 3D geometry.
The deformed position of the surface point S′ is given by

~rS′ =


x+ u1

u2

u3


T 

i

j

k

+


λΨ
ξ2

ξ3


T 

iξ

jη

kζ

 (11)
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where λ(x) is a warp amplitude and Ψ(ξ2, ξ3) a warp function. The deformed coordinates are related to the
undeformed coordinates via a direction cosine matrix C.

The direction cosine matrix C is intrinsic to the structure, determined only by the loading and boundary
conditions. Its parameterisation takes various forms depending on the choice of parameters. In terms of a
general C matrix, the position vector of S′ becomes

~rS′ =


x+ u1 + λΨC11 + ξ2C21 + ξ3C31

u2 + λΨC12 + ξ2C22 + ξ3C32

u3 + λΨC13 + ξ2C23 + ξ3C33


T 

i

j

k

 (12)

The virtual displacement δ~rS′ can be obtained from equation 12 by taking variations with respect to the
states. Let the states be three displacements u1, u2, u3, and three rotation parameters θ1, θ2, θ3 – in the
rotating frame. Note that for a case with shaft dynamics the virtual displacements are to be taken in a
frame which includes the additional states of shaft dynamics, for example a fuselage fixed frame. Taking
variations of each of the Cij components as

δCij =
∂Cij
∂θ1

δθ1 +
∂Cij
∂θ2

δθ2 +
∂Cij
∂θ3

δθ3

we have the virtual displacement in the following form

δ~rS′ = (Dδu)T e0 (13)

where δu are the variations in six states

δu = [δu1, δu2, δu3, δθ1, δθ2, δθ3]T

and D is a matrix of derivatives of size (3× 6). The exact calculation of virtual work can now be carried out
using fluid stresses at the surface. Consider a differential area d ~A within the surface patch ∆ ~A of magnitude

n dA

p
σF

Figure 7. Fluid pressure and surface shear over a rotor blade differential area ~dA

dA and unit normal ~n, Fig. 7.
d ~A = ~ndA = nTe0dA (14)

The differential force generated by the pressure is

−pd ~A = −pnTe0dA

The differential force generated by the fluid stress tensor along the direction of d ~A is

σF · d ~A = σF · ~ndA = (σFn)Te0dA

The virtual work is then

δW =
∫

∆A

(
−p d ~A+ σF · d ~A

)
· δ~rP

=
∫

∆A

[
−pnT + (σFn)T

]
e0 · (Dδu)T e0dA

(15)

If q are the N generalized nodal displacements of a finite element containing the point P , and H is the
(6×N) elemental shape function matrix, it follows from δu = Hδq

δW =
∫

∆A

[
−pnT + (σFn)T

]
DHδqdA = QT δq (16)
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where the generalized force Q is

Q =
∫

∆A

[
−HTDTn p+ HTDTσF n

]
dA (17)

The integration involves variables from both domains. If performed in the fluid domain, exact values of D
and H must be transferred from the structural domain to the fluid node (or face) points. If performed in
the structural domain, exact values of p and σF must be transferred from the fluid domain at the structural
Gauss points. The value of n will be different in both domains (except in the ideal case when the meshes and
spatial orders match exactly). There have been significant contributions by various researchers to address
the issue of conservation and preservation, within the context of temporal accuracy. See for example, Maman
and Farhat,21 Cebral and Lohner,22 Farhat et al.,23 Slone et al,24 and Michler et al.25 The key conclusion is
that exact conservation is ensured only when interpolations of all the variables are performed using schemes
consistent with their domain. Preservation of total forces occurs only in the limit of mesh refinement.

A counterpart of this method is one which preserves the total forces exactly – regardless of mesh size, but
the work calculation is now exact only in the limit of mesh refinement. However, consistent interpolation is
easier (with less transfer across domains) to ensure in this method. This is the case for a force interface where
the fluid stresses are first integrated over each surface patch (in fluid domain) and then used to calculate
virtual work (in structural domain). We call this the patch force interface. The following integration is
performed in the fluid domain

~F =
∫

∆A

−p d ~A+ σF · d ~A

=
[
−
∫

∆A

pnT dA+
∫

∆A

(σFn)T dA
]

e0 = FTe0

(18)

where the force F = [F1, F2, F3]T has been expressed in the same basis. Obviously, the total forces remain
the same when transferred from the fluid to the structural domain. However, because the point of application
of ~F within each surface patch is arbitrary, the method is conservative only in the limit of mesh refinement.
The virtual work by a surface force ~F acting at S′ is simply

F

∆A

Figure 8. A patch force on a rotor blade obtained by integrating fluid pressure and surface shear over an area
∆A

δW = ~F · δ~rS′ (19)

where δ~rS′ is a virtual displacement of the point S′. In terms of states and generalized coordinates

δW = FTDδu = FTDHδq = QT δq (20)

where the generalized force is
Q = HTDTF (21)

The term DT transmits the airloads in 3-D space to the 1-D beam structure. The matrix D varies with the
choice of beam theory. Note that, from eqn. 13, the virtual displacement components are

δr′S = Dδu = DHδq (22)

Equations 21 and 22 highlight the well-known relation that the generalized structural forcing vector relate
to the aerodynamic forcing via the transpose of the relation that connects the aerodynamic deflections to
structural deflections. Here, DH can be interpreted as the equivalent elemental shape functions in 3-D space
for the corresponding beam theory.
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B. Verification of Interface

The objective here is to start from the exact interface and illustrate the necessary simplifications so as to
re-produce the sectional airloads from surface pressures via the interface. This procedure is possible as the
CFD grid is structured.

The structural model is a second-order nonlinear Euler-Bernoulli beam based on the classical formulations
of Refs.26–28 Only one orientation angle remains an independant state, the rest are expressed as functions
of the displacement gradients. Warping is ignored. Denoting the displacements as u1 = u (axial), u2 = v
(lead-lag), and u3 = w (flap); and retaining up-to second order non-linearities; the direction cosine matrix
takes the following standard form

C =

 1− v′2

2
− w′2

2
v′ w′

−v′c− w′s (1− v′2

2
)c− v′w′s (1− w′2

2
)s

v′s− w′c −(1− v′2

2
)s− v′w′c (1− w′2

2
)c

 (23)

where c = cos θ; s = sin θ, and ()
′

is derivative along undeformed elastic axis. The orientation angle θ can be
expressed in two parts – a rigid contribution from built-in twist and control angles θt, and an elastic twist
deformation φ̂ that is a quasi-coordinate.

θ = θt + φ̂

φ̂ = φ−
∫ x

0

w′v′′dx+O(ε3)

where the angle φ is defined such that the torsion, κi, i.e. the total angle of twist per unit length of the
deformed elastic axis, is given by

(θt + φ)+ = κi; θ+
t = θ′tx

+

Here ()+ is the derivative along the deformed elastic axis. Note that the torsion moment is given by GJφ′

or GJ(φ̂′ + w′v′′).
The virtual work is now expressed in terms of the following variations.

δW = Fuδu+ Fvδv + Fwδw +Mw′δw′ +Mv′δv′ +Mφ̂δφ̂ (24)

where

Fu =F1; Fv = F2; Fw = F3 (25)

and

Mw′ = (−ξ2c− ξ3c)F1+
(−v′ξ2s− v′ξ3c)F2+
(−w′ξ2s− w′ξ3c)F3

Mv′ = (−ξ2c+ ξ3s)F1+
[−ξ2(−v′c− w′s) + ξ3(v′s− w′c)]F2

Mφ̂ = [ξ2(v′s− w′c) + ξ3(v′c+ w′s)]F1+[
ξ2
{

(1− v′2/2)s− v′w′c
}

+ ξ3
{
−(1− v′2/2)c+ v′w′s

}]
F2+[

ξ2(1− w′2/2)c− ξ3(1− w′2/2)s
]
F3

(26)

These are the exact beam forcing corresponding to a patch force ~F at a surface point S′ on the deformed
blade, where S′ corresponds to the surface point S = S(x, ξ2, ξ3) on the undeformed blade. Fu provides
forcing for the state u, Fw for w, and Fv for v. The radial moment terms Mw′ and Mv′ are to be used only
when shear states are included. These are small terms , 5% to 10% of Mφ̂. Mφ̂ is the dominant term, the
forcing for elastic twist. Its largest contributing component is

Mφ̂ ≈ −(ξ2s+ ξ3c)F2 + (ξ2c− ξ3s)F3 (27)
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that is readily recognised as the pitching moment contribution of ~F about the elastic axis at x. Note that
the coordinate x is uniquely determined by the parameterization of the surface point. It is built on the
underlying structural model, and thus there is no ambiguity for an advanced geometry blade.

Figure 9 shows the CSD beam within the CFD surface mesh in the present study. The patch coordinates
are taken at the centers of the surface nodes. The surface is parameterized as S(x, ξ2, ξ3) using Eq. 10.
A converged UMARC-SUmb solution (shown later in Results section) is used is for verification. The flow
solution is used to extract the surface patch forces ~F (see Fig. 10). The blade deformations are then be used
to calculate the exact forcing terms following Eqs. 25 and 26.

For verification purposes, an arbitrary set of radial points xp (see Fig. 11) are taken on the beam. The
directly integrated sectional airloads are then compared at these stations with those reduced from the exact
interface. During this reduction, Mφ̂ is calculated from the approximate expression in Eq. 27. The Fu, Fv, Fw,
and Mφ̂, calculated at every x, are then distributed between its two neighboring xp points linearly based on
distance. The sectionally integrated airloads at those points are then compared with the reduced beam forces
divided by ∆xp. If the CFD grid is structured, the points xp coincident with the spanwise grid sections, and
if the expression given in Eq. 27 is used, then both must be identical. For a limited set of xp, a set of 27
points as used here for illustration, they are expected to differ because the reduced beam forces contain each
and every patch force contribution, whereas the sectional airloads include only the sectional distribution. An
example is shown in Fig. 12. The quarter-chord pitching moment at a section on the swept tip is compared
between the two methods.

C. Modified Delta Procedure

The modified delta procedure is formulated in the same manner as the original, but the delta’s are now
taken between two finite element quantities. Two delta quantities are required - one used during response
calculation, and another during hub loads calculation.

The need for two delta quantities is evident from the of the original construction of the method. The
method requires that a lower order aerodynamic model be retained which can provide airload sensitivities
to blade deformation. The purpose is to shift the burden of trim to this lower order model while replacing it
iteratively with CFD. The resulting procedure is very efficient for rotorcraft because the airload sensitivities
also supply the necessary damping for a direct extraction of response harmonics – a reliable and efficient
means for calculating periodic response of a system that lies at or close to resonance with very little structural
damping. The two delta quantities in the present method are constructed to preserve these two ideas.

The first delta is constructed during the response calculation. It is the difference between two finite
element generalized forcing Q (see Eq. 21) – one from CFD patch forces and another from lifting-line
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sectional airloads.
q∆ = QCFD −QLL

Each quantity arises out of an exact integration in its own domain. There is no requirement to interpolate
one on the other. The second delta is constructed during hub loads calculation for trim angle update. It
is the difference between two finite element integrated loads – one from CFD and another from lifting-line
airloads.

h∆ = hCFD − hLL

Again, the integration is exact, seperately, within the CFD and lifting-line domains with no requirement to
interpolate one on the other. The coupling method then follows exactly the same original steps.

1. Perform baseline lifting-line (LL) analysis. Store Q0 = QLL
0 , and elemental integrated loads h0 = hLL0 .

2. Use deformations to calculate CFD solution.

3. Impose CFD patch forces on CSD. Do not calculate response. Instead, Calculate QCFD
0 , hCFD0 .

Obtain q∆0 = QCFD
0 −QLL

0 ; h∆0 = hCFD0 − hLL0 .

Re-perform lifting-line analysis with q∆0 added to intrinsic forcing during response, and h∆0 added
to elemental loads during hub loads calculation. Total forcing is Q1 = QLL

1 + ∆0 where QLL
1 contains

aerodynamic damping. Total hub loads is h1 = hLL1 + ∆0 where hLL1 contains trim sensitivities.

Steps 2 and 3 form one coupling iteration. These are repeated for k = 1, 2, . . .. For example, in each
iteration, the delta and total generalized forcing are given by

q∆k = QCFD
k −QLL

k ; Qk+1 = QLL
k+1 + q∆k

h∆k = hCFDk − hLLk ; hk+1 = hLLk+1 + h∆k

(28)

Alternatively, the delta quantities can be updated as

q∆k = QCFD
k − (Qk − q∆k−1) = q∆k−1 + (QCFD

k −Qk) (29)

Both are identical, only the stored variable is different, one may be preferred over the other for a particular
analysis. The first requires the total and delta quantities be stored in every iteration. The second requires
the lifting-line contributions be seperated out and stored in every iteration. In this study, the second storage
was easier.

The procedure terminates when the delta’s converge (both necessarily converge at the same time). On
convergence both the response as well as trim are satisfied entirely by the CFD airloads.

14 of 24

American Institute of Aeronautics and Astronautics Paper 2008–7325



D. Implementation: UMARC Comprehensive Analysis

The exact coupling is implemented using the University of Maryland Advanced Rotorcraft Code — UMARC.17

It provides the CSD and trim capabilities, and in addition, the aerodynamic sensitivities to blade deforma-
tions as required by the coupling procedure. The details of the model, methodologies, and validation can
be found in Ref.18 The UH-60A rotor model, and the analysis is identical to the one used for the original
CFD/Comprehensive Analysis coupling studies with the UMTURNS code.19,20 The periodic CSD response
is extracted using finite elements in time. Twelve finite elements are used over one revolution, each containing
six nodes with fifth-order mixed Lagrange-Hermite interpolating shape functions.

The trim procedure used is an isolated rotor targetted trim, not a full aircraft trim as in the above
references. The three rotor control angles are determined from a target thrust and the two hub moments,
pitch and roll, at a prescribed set of shaft tilt. The targetted thrust, hub moments, and the shaft angles are
estimated or measured from flight test (see Results section).
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IV. RESULTS

The high-speed flight Counter 8534 from the U. S. Army/NASA UH-60A Airloads Program is chosen for
validation: speed ratio µ = 0.368 (155 kts), vehicle weight coefficient to solidity ratio CW /σ = 0.0783, and
a longitudinal shaft tilt angle of α = 7.31◦ (tilt-forward). The predicted thrust level (along shaft) for this
flight is CT /σ = 0.084, around 17,500 lb. The measured rotor roll and pitch moments (from shaft bending
gages) are around 6000 ft-lb (roll left) and 4200 ft-lb (pitch up) respectively.

There are several reasons for choosing this flight. It is one of the highest vibration flights for this
helicopter, with high levels of rotor vibratory loads. The contribution of CFD is most significant in this
flight. The fundamental mechanisms of vibratory loads in this flight are, also, well documented.18 The
primary mechanism of vibratory airloads in this flight is the large elastic twist deformation of the blade in
response to three-dimensional, unsteady, transonic pitching moments near the tip on the advancing side.
The secondary mechanism, occurring in presence of the correct twist, is an inboard wake interaction on the
advancing side. In the case of rotors with negative lift near the tip, like the UH-60A, the trailed vorticity
moves inboard in the azimuths of negative lift and creates a secondary lift impulse on the following blade at
the junction of the first and second quadrant. This impulse is a significant source of vibratory harmonics.
The state-of-the-art in airloads and structural loads predicted using coupled CFD/Comprehensive Analysis
are also well benchmarked. 15

The intent in this paper is to focus on predictions using the time-spectral method in CFD. The method
has been applied to this rotor, at three different flight conditions, using uncoupled, CFD only simulations.
The deformations prescribed were from the previous studies.4 Coupled simulations for airloads have also been
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carried out recently for three flights.5 In this paper we focus only on the high speed flight, and investigate
both airloads and structural loads in detail.

In the following subsections we present the results from both coupling methods – conventional and exact.
Although both time-accurate and time-spectral computations were coupled with two procedures, our main
discussion is focused on the results using time-spectral method and the results coupled with time-accurate
computation are used for validation purpose. The time-spectral method is first studied using conventional
coupling along with comparison with time-accurate computation, and the results are mostly discussed on
airloads. The conventional coupling is then replaced with exact coupling, and both time-accurate and time-
spectral methods are studied using exact coupling. The results from exact coupling procedure are focused
on structural loads. Convergence pattern of both coupling procedures is also compared.

A. Computational Specifics

A total of 11 time instances were used for the time spectral computations. A structured mesh with 536
blocks and about 17 million nodes was employed. Both time-spectral and time-accurate computations were
performed at the IBM cluster P4+ system at NAVO OCEANO MSRC (Naval Oceanographic Office Major
Shared Resource Center). A total of 128 to 384 processors were used for our computations with 2GB memory
per processor.

B. Time-Spectral with Conventional CFD/CA Coupling

The predicted normal forces at two blade sections are shown in Fig. 13. The figures at the top validate the
time-accurate results with test data. The figures at the bottom compare the time-spectral results. Note
that both are fully coupled first principle results. The trim conditions are identical but the deformations
are different. The time-accurate results are similar to the benchmarked results at all radial stations, but we
focus our attention on the outboard stations. This is because the largest errors are expected at these stations
from the earlier study presented in Fig. 4. These are also the key stations for structural loads inboard. As
shown earlier in Fig. 4, about 10% error is expected from aliasing with 11 time instances. Although the
error pattern in Fig. 4 is valid when using uncoupled prescribed deformation, similar pattern (accumulated
error) is expected for CFD/CA coupling procedure, and the effects are visible in Fig. 13. The impact of
these errors on the vibratory harmonics is shown in Fig. 14. Note that for 11 time instances the cut-off
frequency is (11 − 1)/2 = 5/rev. Thus a 6/rev content in the underlying waveform (time-accurate) will
fold on to 5/rev, 7/rev to 4/rev, 8/rev to 3/rev and so on. Thus the vibratory harmonics 3,4, and 5/rev
are influenced by 8,7, and 6/rev respectively. The radial distribution of the harmonics are shown in detail
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Figure 18. Chord force harmonics (1–5/rev) in magnitude and phase varying over blade span
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blade span

in Fig. 15. The 1/rev phase shows that the trim conditions are identical between the two methods. As 1
and 2/rev (and the steady) are in general in good agreement, 11 time instances appear to be reliable for
performance calculations. At least for this flight condition, there is no significant aliasing from 11, 10, and
9/rev. The vibratory harmonics, however, are not satisfactory. The largest error occurs in 5/rev. The errors
in 3 and 4/rev are relatively lower. This results in a somewhat acceptable structural load (shown later)
as the first flap bending frequency lies between 3 and 4/rev (3.28/rev). We note, however, that the errors
always over-predict by definition and thus always provides conservative loads estimates for design.

The predicted chord forces are shown in the same format in Figs. 16, 17, and 18. Compared to normal
force, the penalty paid due to aliasing errors in chord-forces are more severe on the lead-lag dynamics. The
first chord bending frequency sits between 4 and 5/rev for this rotor (4.66/rev). The aliasing errors at
this harmonics will now have a significant impact on vibratory structural loads (shown later). The typical
prediction in chord loads is unsatisfactory in itself, but that study is beyond the scope of the present paper.
Here, we focus on the comparison between time-accurate and time-spectral results. The chord forces are in
general very well predicted by the time-accurate analysis of the present study – both in phase and magnitude,
see Figs. 16 and 17, except for the 1/rev magnitude. For time-spectral predictions, the aliasing errors follow
the same trend as normal forces – largest in 5/rev (more than 100%) followed by 4 and 5/rev. The errors in
4 and 5/rev are visible in the waveform of the vibratory harmonics shown in Fig. 17. The effect of this error
on structural load is seen later in 5/rev chord bending moment.

The pitching moments drive the key vibratory loads mechanism (large elastic twist deformation) in this
flight. The predicted pitching moments are studied in Figs. 19 and 20. Figure 19 validates the time-accurate
pitching moments. The three-dimensional, unsteady, transonic tip relief effect that generates the impulsive
wave form in the first quadrant is well predicted by both time-accurate and time-spectral method. The
effect of this mechanism is mainly on the 1 and 2/rev pitching moments and therefore, as expected, there
is little aliasing error in the waveform. The harmonic break-down of the pitching moment distribution over
span is given in Fig. 20. The spectrum of the time-accurate pitching moment waveform is more band-limited
compared to the sectional forces and hence there is little error even in the vibratory harmonics. Note that
the large over-prediction of 4, and 5/rev is not a direct effect of aliasing error but an artifact of the grid.
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Figure 21. Convergence of CFD/CA conven-
tional coupling; Time-spectral method; UH-
60A in high speed flight C8534
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pling; Time-spectral method; UH-60A in high
speed flight C8534
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Figure 23. Predicted trim angles and main rotor
shaft power using exact CFD coupling
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The time-accurate waveform shows higher harmonic oscillations near the tip caps and these fold on to the
spectral predictions at the lower harmonics.
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Figure 25. Predicted airloads using exact fluid-structure interface and modified delta procedure: time-accurate
and time-spectral methods in CFD; UH-60A in high speed flight C8534

C. Time-Spectral with Exact CFD/CA Coupling

The time-accurate and time-spectral calculations are now re-performed with the exact interface and the
modified delta coupling procedure. The convergence of the modified delta procedure, and the converged
airload predictions are similar to the conventional coupling but not identical. The convergence patterns
of conventional and exact coupling are shown in Figs. 21 and 22. Both results are from time-spectral
computation in CFD. The converged trim angles and rotor shaft power are compared with flight test data
in Table 23.

The pattern of time-accurate and time-spectral predictions remain the same, as expected, and is shown in
Fig. 25. The focus in this section is on structural loads. First, the structural loads obtained using conventional
and exact coupling procedures are compared in Figs. 26 and 27. The time-accurate predictions are used
for both procedures and, the purpose of this comparison is the validation of the exact coupling procedure.
Once validated, the procedure is then used to compute time-accurate and time-spectral structural loads in
Figs. 28 and 29.

Note that the exact coupling procedure is targeted for unstructured grids and advanced geometry blades.
It is expected to provide a very close comparison in the present case. The structured grids, the relatively
conventional blade shape, and the use of all spanwise grid points in the conventional interface enables the
validation of the exact method. This is because, as shown earlier, the dominant terms of the exact interface
reduces to a conventional interface (of sectional airloads) in the limit of refinement on a structured grid with
the sections defined as per the underlying structural model.

Figure 26 shows that the flap bending moments are identical between the two coupling methods – con-
ventional and exact. The calculations are using time-accurate method in CFD and the validation is identical
to the present state-of-the-art. Figure 27 shows the torsion loads. Again, there is no phenomenological
difference between the two predictions. The state-of-the-art discrepancy in 4/rev predictions, manifest in
the retreating side (near 270◦ azimuth), remain. The waveform on the retreating side in the outboard sec-
tions of the blade, 50% and 90% (similar to 50%, not shown), however, are different. The exact predictions
appear to have an improved waveform. This stems from an improved 3/rev harmonic component. Note
that predictions using measured airloads have a similar waveform in the retreating side as the conventional
coupling result. This is consistent, as the measured airloads were also imposed as sectional airloads, not
directly as surface pressures with an exact interface. The effect of the improved 3/rev and the remaining
4/rev discrepancy is reflected in the pitch link load harmonics.

Figure 28 shows the bending moments from time-spectral calculations. The error in 3/rev normal force
shown earlier in Fig. 15 leads to a reduced peak magnitude in the flap bending moments. The error in
5/rev chord force is evident in the chord bending moments. The torsion loads, shown in Fig. 29, are very
similar, consistent with the airload trends shown earlier in Fig. 20. The pitch link load harmonics are almost
identical. The 6/rev and higher harmonics in spectral are entirely from aliasing errors.
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V. Conclusions and Future Work

A Fourier collocation based time-spectral method was used to accurately compute periodic helicopter ro-
tor flows in steady level flight. The primary objective was to study accuracy and convergence patterns of this
method for rotor flows by quantifying the associated error terms (aliasing errors). The vibratory airloads and
structural loads of the UH-60A rotor were predicted using time-spectral method based CFD/Comprehensive
Analysis coupling. The predictions were validated with flight test data from a high vibration flight of this
helicopter. The time-accurate and time-spectral methods were compared consistently at the same trim con-
dition. The CFD/Comprehensive Analysis coupling procedure was different from existing methods, and an
exact fluid-structure interface was implemented in this paper. A modified delta coupling procedure was
proposed that preserves the exactness of the interface. Both time-accurate and time-spectral analysis were
carried out using the exact coupling procedure. The followings are the conclusions of this study.

1. The time-spectral method for a four-bladed helicopter requires at least 11 time-instances for the predic-
tion of vibratory harmonics. The cut-off frequency for this case is 5/rev, and the vibratory harmonics
(3,4,5)/rev contain folding frequency errors from (6,7,8)/rev of the underlying waveform. The har-
monic error is less than 5% in pitching moments, approximately 5–10% in vibratory normal force, and
10–20% in vibratory chord force. The resulting error in vibratory structural load is unsatisfactory
- primarily because the flap and chord bending frequencies of this rotor (3.28/rev and 4.66/rev) lie
within the range of alias frequencies.

2. For this rotor, and for the flight condition studied, the errors decay asymptotically following theoretical
trends for smooth functions. Convergence depends on the spectrum of the underlying waveform but is
quantifiable. A total of 17 time-instances decay the error to 1% the level of time-accurate predictions,
while a total of 25 time-instances decay the error to 0.1%.

3. It is concluded that without any anti-aliasing filter, reliable prediction of structural loads require as
many time-instances as, at least, 4 times the blade number. It also appears, that reliable prediction of
performance require, at least, 2 times the blade number.

4. The saving in computational time with respect to time-accurate simulations is substantial – approxi-
mately one-fifth the time with 11 time instances, one-third with 17 time-instances and one-half for 25
time instances.

5. The fluid-structure interface implemented in this study, along with the modified delta method, provides
a generic delta coupling capability in rotary-wing CFD/CSD for unstructured grids, advanced geometry
blades, and generic structural models.

In summary, the time-spectral method in CFD appears to be an effective procedure for the calculation
of rotor vibratory loads. The method can be particularly attractive if equipped with anti-aliasing filters.
The method also opens opportunity for blade shape optimization as the steady-state formulation of the fluid
equations allow the use of adjoint based methods – similar to the gradient based optimization procedures
long used in the structural domain. Thus the method has significant potential for design optimization using
coupled CFD/CSD and VFD procedures.
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