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Abstract

Many practical flows of aerodynamic interest are unsteady in nature, and between increases in

computing power and advanced algorithms, accurately predicting and designing for the performance

of aerospace systems in an unsteady environment is becoming more tractable. Several examples of

engineering applications that could immediately benefit from a truly time-accurate design approach

are open rotors, rotorcraft, turbomachinery, wind turbines, maneuvering flight, or flapping flight, to

name a few. An unsteady treatment of these flows will also directly enable multidisciplinary design,

analysis, and optimization involving other time-dependent physics associated with these systems,

such as their structural or acoustic responses. Consequently, new unsteady design methodologies

will enable the design of next generation aerospace vehicles with reduced fuel burn, emissions, and

noise or rotating machinery for meeting future propulsion and energy challenges.

This dissertation presents the development and application of a new, unsteady continuous ad-

joint formulation for optimal shape design. The arbitrary Lagrangian-Eulerian (ALE) form of the

unsteady, compressible Reynolds-averaged Navier-Stokes (RANS) equations with a generic source

term is considered, and from these governing flow equations, an adjoint formulation centered around

finding surface sensitivities using shape calculus is derived. This surface formulation provides the

gradient information necessary for performing gradient-based aerodynamic shape optimization. To

analyze the e↵ectiveness of the methodology, gradients provided by the continuous adjoint and finite

di↵erencing approaches are compared. Optimal shape design is demonstrated in both two and three

dimensions for a range of pitching and rotating applications.

v



To my mother

Aileen Economon

1955 - 2009

vi



Acknowledgement

I have been extremely fortunate to be supported through external fellowships throughout the ma-

jority of graduate school. These fellowships a↵orded me the opportunity to pursue the topics of

most interest to me, which led me to the research problems treated in this dissertation. This type

of academic freedom has been invaluable in building my skill set as an independent researcher, and

I am grateful to the National Science Foundation and the Department of Defense for their support.

I would like to thank the members of my dissertation committee for sharing their time and

insights: Prof. Michael Saunders, Prof. Sanjiva Lele, Prof. Robert MacCormack, and Prof. Antony

Jameson. I had the pleasure of taking my first CFD course with Prof. MacCormack, and he sparked

a love for the topic that propels me forward. Prof. Jameson is owed a special thanks for pioneering

the adjoint-based methods for design in aeronautics upon which this dissertation is built.

Much of this dissertation took shape with the guidance and input of Dr. Francisco Palacios,

and he has been a mentor and friend over the past several years. My advisor, Prof. Juan J.

Alonso, has opened the door to new ideas and played a big role in my professional development. I

have appreciated the freedom he granted me for investigating my academic interests, as well as the

gentle nudges to keep me on track. I leave each meeting with Francisco and Juan feeling optimistic

about research and energized: their infectious enthusiasm and unwavering support create a positive

environment and inspire productivity. I hope for a long career full of collaboration and friendship

with them.

It has been wonderful to call the Aerospace Design Lab my workplace while here at Stanford.

The personalities of my lab mates and spirited conversations (work-related or otherwise) make for

a daily atmosphere that is serious enough to make research contributions but light enough to laugh

together. To my Stanford friends, many of whom I met in the first week here: we have had many

great adventures while exploring the bay area together over the last several years, and I hope that

we never stop exploring. My friends from Notre Dame have left me with my best memories during

undergrad, and their friendship helps keep me motivated. I was too young to even remember how I

met most of them, but my friends from home in St. Louis form a special group. I carry them with

me wherever I go, and whenever I see them, we pick right back up where we left o↵. I can’t wait to

see what life has in store for all of us.

I have always looked up to my two older sisters. Undoubtedly, they have helped mold the person

that I have become over the years, so in many ways, the words in this text are also their own. I

vii



share this dissertation with them. My father has been the model of high integrity, perseverance, and

strong work ethic. He has set a very high bar in that regard, one that I will always strive to meet.

Finally, I am grateful to my mother, to whom this is dedicated, for telling me that life is short and

reminding me to have some fun. I put my best e↵ort toward things that I think would make her

proud, and I believe this dissertation would have been one of them.

viii



Contents

Abstract v

Acknowledgement vii

1 Introduction 1

1.1 Optimal Shape Design for Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Sensitivity Analysis via the Adjoint Approach . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Continuous Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Discrete Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Design Optimization in Unsteady Flows . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Governing Equations for Fluid Dynamics 13

2.1 Compressible, Unsteady Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . 13

2.2 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Spalart-Allmaras Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Compressible, Unsteady Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Governing Equations in a Rotating Reference Frame . . . . . . . . . . . . . . . . . . 18

3 The Unsteady Continuous Adjoint Approach 21

3.1 Optimal Shape Design Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Variation of the Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Force-based Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Temperature-based Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The Adjoint Approach to Optimal Design . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 The Linearized Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Linearized Navier-Stokes Equations in ALE Form . . . . . . . . . . . . . . . . 29

3.4.2 Linearized Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Complete System of Linearized Equations . . . . . . . . . . . . . . . . . . . . 33

3.5 The Unsteady Continuous Adjoint Equations . . . . . . . . . . . . . . . . . . . . . . 34

ix



3.5.1 Obtaining the Adjoint Equations . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Evaluating the Adjoint Boundary Integrals . . . . . . . . . . . . . . . . . . . 38

3.5.3 Complete System of Adjoint Equations and Surface Sensitivities . . . . . . . 48

4 Numerical Implementation 57

4.1 Spatial Integration via the Finite Volume Method . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Discretizing the Governing Flow Equations . . . . . . . . . . . . . . . . . . . 60

4.1.2 Discretizing the Continuous Adjoint Equations . . . . . . . . . . . . . . . . . 67

4.1.3 Evaluating Gradients of the Flow and Adjoint Variables . . . . . . . . . . . . 74

4.2 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Time-marching Schemes for the Governing Flow Equations . . . . . . . . . . 75

4.2.2 Time-marching Schemes for the Continuous Adjoint Equations . . . . . . . . 78

4.2.3 Convergence Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4 Dynamic Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Design Variable Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Gradient Projection using Surface Sensitivities . . . . . . . . . . . . . . . . . 85

4.3.2 Bump Function Design Variables . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Free-Form Deformation Variables . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Mesh Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Spring Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Optimal Shape Design Applications 91

5.1 Rotating Airfoil in Inviscid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Pitching Airfoil in Inviscid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Pitching Airfoil in Turbulent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Rotor in Hover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Wind Turbine Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Pitching Wing in Inviscid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7 Pitching Wing in Turbulent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions and Future Directions 113

A Jacobians 115

Bibliography 119

x



List of Tables

3.1 Number of physical (P) and numerical (N) boundary conditions required for the direct

and adjoint problems in three dimensions (the state vector U has five components). . 45

5.1 Objective and constraint values for the baseline and final pitching wing design. The

maximum thickness is denoted by t
y/b

where the subscript gives the spanwise location

of the section as a percentage of span, b. . . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



xii



List of Figures

1.1 Flow chart for a typical shape optimization problem. J is the objective function, and

~x is the vector of design variables. J⇤ and ~x⇤ represent an optimum. . . . . . . . . . 3

1.2 Pressure coe�cient and surface sensitivity contours (drag objective) on the upper

surface of a pitching wing at the incidence of maximum drag. . . . . . . . . . . . . . 6

1.3 Drag coe�cient history and upper surface pressure contour comparison for a pitching

wing design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Notional schematic of the flow domain ⌦ the boundaries �1 and S, as well as the

definition of the boundary surface normals. . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 An infinitesimal shape deformation in the local surface normal direction. . . . . . . . 22

4.1 Flow chart for a typical shape optimization problem. J is the objective function, and

~x is the vector of design variables. J⇤ and ~x⇤ represent an optimum. . . . . . . . . . 58

4.2 Schematics showing the geometry of the primal and dual meshes. . . . . . . . . . . . 60

4.3 Hicks-Henne shape functions for a set of equally spaced bumps. . . . . . . . . . . . . 86

4.4 An example of the FFD technique applied to the ONERA M6 wing. . . . . . . . . . 87

4.5 An example of volume mesh deformation using the linear elasticity equations. . . . . 89

5.1 Details for the 2D rotating airfoil numerical experiment, the computational mesh, and

solutions for the baseline geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Comparison studies between the continuous adjoint and finite di↵erencing for the

gradient of C
d

. A set of 38 Hicks-Henne bump function variables (x
i

) are along the

x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Gradient verification and a comparison of the baseline and minimum drag airfoil designs. 94

5.4 Verification, validation, and optimization results for a pitching NACA 64A010. . . . 95

5.5 Numerical grids for the pitching NACA 64A010 calculations. . . . . . . . . . . . . . 96

5.6 Numerical results for a pitching NACA 64A010 in turbulent flow. . . . . . . . . . . . 97

5.7 Force coe�cient histories, shape comparison, and optimization history for the pitching

airfoil design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8 Mesh and FFD box details for the Caradonna and Tung numerical experiment. . . . 99

xiii



5.9 C
p

contours on the upper surface of the baseline rotor geometry along with a compar-

ison to experiment at multiple span locations. The blade tip is on the right, which is

rotating toward the bottom of the page. The surface sensitivity contours for a torque

objective function are also shown. Note the high sensitivity to shape deformations in

the vicinity of the shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Gradient verification using the FFD control point variables and optimization results. 101

5.11 Comparison of the baseline and optimized rotor geometries along with C
p

contours.

The strong shock has been removed due to a distinct change in the tip shape. . . . . 102

5.12 C
p

distributions at multiple radial blade stations compared with experimental data. 103

5.13 Pressure coe�cient, surface sensitivity, and shape modifications for the NREL Phase

VI wind turbine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.14 Surface mesh for the inviscid case and FFD box for the pitching ONERA M6 numerical

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.15 Pressure coe�cient (top row) and surface sensitivity contours (drag objective function,

bottom row) for three time instances during one period of oscillation. The figures

in the left column correspond to the minimum drag incidence, those in the middle

column are near the mean angle of incidence, and those on the right correspond to

the incidence of maximum drag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.16 Force coe�cient histories, gradient comparison, and optimization history for the in-

viscid pitching wing design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.17 Pressure coe�cient contour comparison between the ONERA M6 and the final design

at the incidence of maximum drag for the inviscid case. . . . . . . . . . . . . . . . . 109

5.18 Shape comparison of the baseline (dotted) and final (solid) inviscid wing sections. . . 109

5.19 Surface mesh topology showing the wing surface and symmetry plane for the URANS

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.20 Force coe�cient histories, section shape comparison, and optimization history for the

pitching wing design in turbulent flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.21 Pressure coe�cient contour comparison between the ONERA M6 and the final design

at the incidence of maximum drag for the URANS case. . . . . . . . . . . . . . . . . 112

xiv



Chapter 1

Introduction

The engineering design process provides a systematic procedure for the creation of a product that

meets the user’s specification or needs. Once a feasible design for a particular product or system

has been achieved, a natural question is then how to make it better, or the best, for its intended

purpose. The ultimate goal of engineering design problems is to create an optimized system.

Optimizing the performance of an engineering system is often accomplished by hand: designers

iterate through prototypes, implement design changes through expert intuition, or test new ideas

and measure performance using physical experiment. However, due to its increasing maturity and

cost benefits over physical experiment, computational simulation is becoming more prevalent for

analyzing these systems. As a direct consequence, it has enabled simulation-based design where

computational tools are combined to automate the design process. This type of “automatic” design

has tremendous potential, but it should be viewed as a tool to aid the designer when problems

become complex enough to elude intuition.

The performance of an engineering system can often be evaluated based on its size and shape.

The field of Optimal Shape Design (OSD) is concerned with finding the optimal shape for the object

or surface that improves its performance. The performance metric will be defined by the objective

of the designer, and this objective function will be minimized or maximized, subject to certain

constraints, by changing the shape of the object. In the context of aeronautics, a typical example

might be finding the shape of an aircraft wing with minimum drag while maintaining the required

lift to stay aloft and obeying any geometric constraints on the wing (such as structural sizing or

internal fuel volume requirements). In this example, the optimal shape of the wing is one with the

minimum drag that satisfies the constraints.

Much of the progress in OSD can also be attributed to the aforementioned increased use and

maturity of computational simulation and in particular, the numerical solution of Partial Di↵erential

Equations (PDEs) on computational grids. The development of Computational Fluid Dynamics

(CFD) serves as an exceptional example. Over the last half-century, researchers have developed

numerical methods for solving problems across the entire range of approximation for fluids in a

continuum, starting from simpler models such as the potential flow equations all the way up to
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2 CHAPTER 1. INTRODUCTION

the current state of the art using the Reynolds-averaged Navier-Stokes equations (RANS). Higher-

fidelity methods, such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS),

are currently active research areas as well, although their computational cost is significantly higher.

As they become available, these new CFD methods can be included in the OSD process and enable

the treatment of more complex problems.

OSD is a broad and maturing field, appearing in multiple industries (aerospace, automotive,

medical devices, to name a few) and spanning an array of disciplines, such as fluids, structures, or

acoustics, for example. Today, shape design problems are mainly solved using automatic techniques

on computers that leverage the latest advances in topics such as the numerical solution of governing

equations describing particular physics, numerical optimization, sensitivity analysis in the case of

gradient-based optimization, geometry and mesh definitions, and design variable parameterization.

OSD is simultaneously a mathematically- and application-rich topic. Mathematical rigor concern-

ing many areas (optimal control theory, PDEs, numerical optimization, vector calculus, di↵erential

geometry) is required, but there is also a need for a translation from the purely mathematical to the

applied, such that OSD can gain further penetration into industrial practice for realistic problems

of engineering interest.

1.1 Optimal Shape Design for Fluids

The shape optimization of systems whose performance is governed by the equations of fluid dynamics

can be considered a subset of OSD. The goal in this scenario is to compute the forces or heat

transfer on a body (wing, aircraft, automobile, etc.) from the numerical solution of the governing

fluid equations on a computational grid occupying the volume surrounding the geometry and to use

this information to improve the design in an iterative fashion. CFD is therefore a primary tool in

the shape design process.

E�cient algorithms for CFD have allowed the aerospace industry to perform large numbers of

simulations for rapidly evaluating candidate designs. Other developments, such as unstructured

mesh technology, have enabled the analysis and design of increasingly complex geometries. Given

the shorter turnaround times a↵orded by advances in CFD, applying OSD to large-scale problems of

industrial interest with complex geometry or in other costly situations, such as for unsteady flows,

is becoming more tractable.

The solution of the RANS equations is now an everyday occurrence in the aerospace industry, and

RANS will likely remain the workhorse for analysis and design for the foreseeable future while higher-

fidelity methods continue to mature along with further increases in computing power. Given current

computational resources, including LES or DNS within the design process for practical problems is

infeasible. While aerodynamic design using the steady RANS equations is fairly well established,

there exists a growing interest in moving beyond steady problems, so that time-accurate physics

can be taken into account during the design process. These problems may include moving surfaces

at high Reynolds numbers, such as rotating rotor blades or maneuvering wings, and require the

unsteady, compressible RANS equations in arbitrary Lagrangian-Eulerian (ALE) form for accurate
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Figure 1.1: Flow chart for a typical shape optimization problem. J is the objective function, and ~x
is the vector of design variables. J⇤ and ~x⇤ represent an optimum.

analysis. OSD techniques for unsteady and turbulent flows have been highlighted previously as

unsolved problems [84], and although some progress has been made, there remains a need to derive

and refine new, e�cient techniques for unsteady problems with surfaces in motion.

Due to the high computational cost of solving the nonlinear flow equations, especially in unsteady

situations, gradient-based optimization is an attractive option. As an example, consider again the

design of a commercial aircraft wing for minimum drag with a lift constraint with respect to design

parameters such as the sweep, taper, and twist of the wing. In this situation, a basic framework for

optimal shape design might become:

1. Apply the current design variable state (sweep, twist, and taper) to the wing geometry.

2. Deform the existing volume mesh, or create a new mesh, around the updated surface shape.

3. Compute the objective and constraint values (drag and lift) by solving the flow equations.

4. Compute the gradient of the objective and constraints with respect to the design variables.

5. Provide the objective, constraint, and gradient values to a suitable optimization method for

determining an updated design variable state.

6. Repeat previous steps until an optimum is found.

A representative flow chart for this process can be found in Fig. 4.1. The steps above form a type

of segregated approach where the various components of the problem are executed independently
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and placed in a design cycle with an optimization method, such as steepest descent or conjugate

gradient. Note that other approaches where the flow, gradient, and optimality conditions are solved

simultaneously, often called one-shot approaches [119], are possible.

Consider now the individual components required to perform the design cycle described above.

Geometric representation and mesh generation are important components, but as these tools are

also needed for basic analysis, many external packages, such as Computer-aided Design (CAD)

programs and meshing software, are readily available. As they are used in many areas unrelated to

fluids, numerous numerical optimization methods are also well established. Apart from needing to

compute the objective function by solving the flow equations, we must perform sensitivity analysis

by a suitable method in order to compute the gradients that are needed for optimization. The choice

of method for sensitivity analysis is a crucial one that should garner much attention, as it will have

a large impact on the overall e�ciency of the shape optimization process.

One straightforward method for sensitivity analysis is the finite di↵erence method. This brute-

force approach for computing gradients can be applied in a simple fashion by taking the di↵erence

of the objective function value from a flow solution for the baseline geometric configuration and

the new value of the objective function after applying perturbations to a chosen design variable,

and finally dividing by the perturbation step size. In this fashion, the entire gradient vector can

be computed by perturbing each design variable individually. This approach is costly for situations

with a large design space, as computing the gradient for a problem with N design variables will

require N + 1 flow solutions. Furthermore, the finite di↵erence approach is sensitive to the choice

of step size: a large step size may lead to unacceptable truncation error in the finite di↵erence

calculation, whereas a very small step size will su↵er from numerical precision issues in the form of

subtractive cancellation. The accuracy issues can be eliminated by formulating the finite di↵erence

problem in terms of a design variable perturbation in the complex plane [75]. However, the cost

of the complex-step derivative approximation still depends on the number of design variables, and

complex arithmetic can result in nearly double the overall cost of finite di↵erencing. The exact

gradients provided by the complex-step method have proven incredibly useful as a tool for verifying

other gradient calculation techniques. An analogue for computing exact higher-order derivatives

was recently developed by Fike [36], and it has been used to enhance optimization methods where

injecting Hessian information proves useful.

Unfortunately, it is often the case in aerodynamic design that the design space is quite large.

For instance, in order to suitably parameterize a full aircraft or vehicle configuration, a design space

containing O(100) design variables (or more) is a regular occurrence. Given the high computational

cost of function evaluations from CFD, a finite di↵erence-type approach is not practical for these

problems, and ideally, a sensitivity analysis technique that is independent of the number of design

parameters would be employed. One such technique is the adjoint approach, and it is the main topic

of this dissertation.

As an analytic method, the adjoint approach takes advantage of our knowledge of the govern-

ing equations, and more specifically their linearization, in order to extract sensitivity information.

Obtaining the adjoint of a governing system is typically demonstrated through the use of Lagrange
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multipliers, and the result is a linear problem of similar complexity to the original governing equa-

tions that, when solved, provides the sensitivity of a chosen objective function with respect to an

arbitrary number of design parameters. Note that, while the cost of computing a gradient becomes

independent of the number of design variables, a separate adjoint system must be solved for each

objective function or constraint in a particular optimization problem.

1.2 Sensitivity Analysis via the Adjoint Approach

Formally, the groundwork for applying the adjoint approach can be traced back to the work of Li-

ons [72] concerning the optimal control of systems governed by partial di↵erential equations. Piron-

neau applied variational methods from optimal control to solve several drag minimization problems

in incompressible, laminar flow [103] and other shape design problems for elliptic systems [104]. A

framework for computing the gradient of an objective function analytically using the co-state, or

adjoint, vector was demonstrated here in order to avoid the costly finite di↵erence approach. Much

of the theoretical basis for the adjoint method was also explored, including optimization techniques

and optimality conditions, and consideration was given to numerical solutions on computers using

the finite element method.

For problems in aeronautics, Jameson first introduced the adjoint approach for shape design

in transonic flows to reduce shock-induced drag [50, 51]. Further pioneering work by Jameson et

al. [55, 60] treated the Euler and Navier-Stokes equations in three dimensions, thus enabling the

design of complete aircraft configurations [57].

Adjoint formulations as a means of sensitivity analysis have since become the subject of a rich

volume of research literature. Many advances and extensions have been made, and the e↵ectiveness

of these formulations for use in aerodynamic design, especially for steady problems, is well estab-

lished. While we are interested in shape optimization in this work, researchers continue to find new

applications for adjoint sensitivities, such as error estimation, uncertainty quantification, or mesh

adaptation [42, 35, 71, 99].

Adjoint formulations are now typically classified by their derivation as either continuous (the

governing equations are first linearized then the result is discretized) or discrete (the governing

equations are first discretized and the result is linearized). The merits for each approach have been

discussed at length in literature, and they have been compared directly by several authors [66, 41, 87].

While it is generally agreed that both approaches are equally useful sensitivity analysis techniques for

aerodynamic shape design, the details of their implementation result in advantages and disadvantages

under di↵erent circumstances. A brief overview of the continuous and discrete adjoint approaches

is given below.

1.2.1 Continuous Adjoint

The early work by Lions, Pironneau, and Jameson that is described above was continuous in nature,

i.e., analytic expressions for the gradient of a functional were obtained through the use of variational
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Figure 1.2: Pressure coe�cient and surface sensitivity contours (drag objective) on the upper surface
of a pitching wing at the incidence of maximum drag.

methods. Following the continuous approach results in a set of continuous PDEs and boundary

conditions for the adjoint system that must be solved as an additional requirement in order to

compute the gradient. The ability to study a continuous PDE for the adjoint can o↵er the advantage

of physical insight into the character of the governing flow and adjoint systems, as well as flexibility

in the choice of solution method. This insight can aid in composing well-behaved numerical methods

that are tailored to the adjoint equations.

An additional advantage of the continuous approach is the ability to recover an analytic expres-

sion for the gradient of a functional as an integral over the surface to be designed, which is often

called a surface formulation for computing gradients. A surface formulation of this type has no

dependence on volume mesh sensitivities (in a continuous sense, movement of interior mesh nodes

should not a↵ect the behavior at the surface). After computing the adjoint solution in the domain,

the gradient can be calculated with almost negligible computational cost by evaluating the analytic

expression for the sensitivity, or the surface sensitivity, at each node and integrating over the surface.

The surface sensitivity provides a measure of the variation of the objective function with respect to

infinitesimal variations of the surface shape in the direction of the local surface normal.

As noted even in early work by Pironneau [104], the closed-form expression for sensitivity can

also provide designer intuition by showing engineers exactly where it is best to modify the shape of

their designs. Furthermore, these surface sensitivities can be mapped onto a surface to give a visual

representation that can help designers make rapid changes or define appropriate design variables for

further optimization. An example of a surface sensitivity map for a pitching wing in transonic flow

is presented in Fig. 1.2.

While initial results for the continuous adjoint were calculated on structured meshes, numerical

methods for the continuous adjoint equations were extended to unstructured meshes for complex
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geometries. Anderson and Venkatakrishnan [3] demonstrated one of the first surface formulations for

the Navier-Stokes equations on unstructured meshes, but they noted that higher-order derivative

terms appearing in the adjoint equations caused issues related to implementation and accuracy.

Jameson and Kim [58] arrived at a similar surface formulation for the Euler equations by eliminating

volume integral terms from the gradient formula in the continuous limit. Castro et al. [18] derived

continuous adjoints for inviscid and laminar flows on unstructured grids with a special emphasis

on simplifications and the reduction of higher-order derivative terms with the aid of di↵erential

geometry formulas (shape calculus) [115, 118]. The resulting surface formulation alleviated many

of the issues related to implementation and accuracy for unstructured meshes, and it has been

successfully applied on three-dimensional meshes for a range of applications [97, 112]. Bueno-Orovio

et al. [14] later extended the formulation to turbulent flows by including the Spalart-Allmaras (S-A)

turbulence model, which represented the first such formulation for compressible flows.

Despite many advantages, continuous adjoint approaches can su↵er from issues related to their

derivation and formulation. Depending on the form of the governing equations and the choice of

objective functions, the mathematical manipulations required to arrive at the continuous adjoint

system may be quite complicated or even impossible. The continuous approach does not allow for

the choice of arbitrary functionals, as only certain terms can be canceled on the solid boundary

surface in order to arrive at a consistent adjoint system [4]. Special considerations may be required

for handling discontinuities such as shocks [5] or other non-di↵erentiable terms. Deriving consistent

boundary conditions and expressions for the surface sensitivity that accompany the continuous

adjoint equations can also be di�cult, and unfortunately, clear strategies for their derivation are

less prevalent in the literature [40, 46]. Once derived, however, the continuous adjoint approach can

be easily implemented within existing solvers while leveraging many of the same numerical methods

used for the flow problem.

1.2.2 Discrete Adjoint

In the discrete adjoint approach, the flow equations and objective function are first discretized

and then linearized in order to form the adjoint equations. Therefore, the result of a discrete

adjoint derivation is a linear system for the unknown adjoint state that involves the Jacobian of

the discretized governing equations and a right-hand side based on the chosen objective function.

The discrete adjoint can be derived in several ways, but the concept of Lagrange multipliers is often

used, which is similar to the continuous approach.

The sensitivity information provided by the discrete adjoint is numerically exact, i.e., it gives

the exact gradient of the discretized objective function. In this regard, discrete adjoint sensitivities

are compatible with finite di↵erence or complex-step sensitivities. In fact, the complex-step method

is regularly used in literature to verify discrete adjoint sensitivities to near machine precision. This

numerical consistency between the objective function and the gradient has the potential to help

optimizers find minima more easily, as opposed to the continuous adjoint approach, which o↵ers an

inexact gradient of the discrete functional.

Soon after the work of Jameson on the continuous adjoint for compressible flows, numerous
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researchers began investigating discrete adjoint formulations. Frank and Shubin [37] first applied

the discrete adjoint approach for quasi-one-dimensional flow. Burgreen and Baysal [15] and also

Elliott and Peraire [33] performed shape design using discrete sensitivities from the Euler equations

in three dimensions. A discrete adjoint for turbulent flows on unstructured meshes in two dimensions

was presented by Anderson and Bonhaus [2] for airfoil design. Nadarajah [86] developed the discrete

adjoint for the Euler and Navier-Stokes equations based on the schemes of Jameson.

Unfortunately, the discrete approach can become increasingly complex for higher-order schemes

with large stencils, and the memory required for storing the discrete Jacobians can also be a bottle-

neck. Many strategies for avoiding memory overhead or for simplifying the linearization by excluding

terms at the cost of accuracy in the resulting gradient have been studied [38, 91, 39, 95, 26, 80].

A more comprehensive review of the various strategies employed for alleviating performance issues

and memory requirements for discrete adjoints has been prepared by Peter and Dwight [101].

Algorithmic di↵erentiation (AD) is an approach for automatically computing derivatives using

software tools that operate directly on the source code representation of the discretized equations [44,

20]. In recent years, the use of AD has become more widespread, and it has been demonstrated as

another option for obtaining the Jacobians of the discretized governing equations that are needed to

form the discrete adjoint [73]. AD has also been applied to entire flow solvers for obtaining a discrete

adjoint solver rather than in a piecemeal fashion for the various Jacobian components. However,

The application of AD in this manner can result in prohibitively large memory requirements or code

runtime, unless given particular attention [17].

1.3 Design Optimization in Unsteady Flows

Many practical flows of aerodynamic interest are unsteady in nature, and with the increasing power

of computational resources and advanced algorithms, accurately predicting and designing for the

performance of aerospace systems in an unsteady environment is becoming more tractable and more

of a necessity. Several examples of engineering applications that could immediately benefit from

a truly time-accurate design approach are open rotors, rotorcraft, turbomachinery, wind turbines,

maneuvering flight, or flapping flight, to name a few. An unsteady treatment of these flows will also

directly enable multidisciplinary design, analysis, and optimization involving other time-dependent

physics associated with these systems, such as their structural or acoustic responses. Consequently,

these new unsteady methodologies will enable the design of next-generation aerospace vehicles with

reduced fuel burn, emissions, and noise or rotating machinery for meeting future propulsion and

energy challenges.

Computational cost is paramount for design in unsteady flows. Due to the increased cost of

time-accurate simulations, e�cient methods for computing sensitivity information are a must. The

adjoint approach is again an appealing option, as its computational cost is independent of the number

of design variables. However, adjoint formulations for unsteady problems are less common and more

challenging due to the potentially prohibitive storage requirements associated with managing the

time-accurate solution data that is needed for the solution of the corresponding unsteady adjoint
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equations.

Moreover, the engineering applications mentioned above also involve moving aerodynamic sur-

faces, and this motion must be taken into account by the governing flow equations (including the

boundary conditions) and subsequently, by the adjoint equations. As previously mentioned, solv-

ing the governing equations in ALE form addresses this issue, but it adds an additional layer of

complexity to the problem, as the motion of the surface and surrounding volume mesh must be

treated in time. The derivation of a continuous adjoint based on the ALE form of the equations

requires consideration of the dynamic surfaces and meshes, and the terms related to the motion of

the domain appear explicitly in the adjoint system, boundary conditions, and expressions for the

surface sensitivities.

Despite the challenges, recent work demonstrating the viability of unsteady adjoint approaches

across a range of applications suggests a growing interest in and capability for design in unsteady

flows. Nadarajah and Jameson [88] performed shape design for pitching airfoils using the Euler

equations with both continuous and discrete adjoints and compared the unsteady approach to multi-

point design. Rumpfkiel and Zingg [108] used a discrete adjoint formulation for the control of

unsteady flows in two dimensions, including drag minimization for flows past blu↵ bodies and inverse

design of a multi-element airfoil for noise. Mavriplis and Mani [81, 74] formulated an unsteady,

discrete adjoint for turbulent flows on dynamically deforming unstructured meshes in both two and

three dimensions. More recently, Nielsen et al. [93, 92] have demonstrated an unsteady, discrete

adjoint approach for design in turbulent flows on dynamic, possibly overset, deforming meshes.

Economon et al. [29] investigated an unsteady continuous adjoint for inviscid flows around pitching

airfoils on meshes with sliding mesh interfaces.

In certain situations, complementary approaches are available to help reduce the cost or com-

plexity of the problem. For some rotating applications, the governing flow equations can be recast

into a rotating frame of reference moving with the body. This transformation allows for the steady

solution of a problem that was unsteady in the inertial frame, and consequently, it can considerably

reduce the computational cost of these calculations. However, the rotational speed of the surface

and volume mesh must still be accounted for in this formulation, along with an additional source

term in the momentum equations. Several publications have addressed adjoint-based shape design

using this form of the equations. Lee and Kwon [68] presented a continuous adjoint formulation for

inviscid, hovering rotor flows on unstructured meshes. Discrete adjoint formulations for the RANS

equations in a rotating frame have been shown by Nielsen et al. [94] with the Spalart-Allmaras tur-

bulence model on unstructured meshes and by Dumont et al. [24] with the k � ! turbulence model

and the shear stress transport correction on structured meshes. Economon et al. [28, 30] have shown

both inviscid and viscous continuous adjoint formulations in a rotating frame, which form a subset

of the results within this dissertation.

Another complementary approach for unsteady problems with inherent time-periodicity is the

time-spectral method [43], or similarly non-linear frequency domain methods [45, 83]. These ap-

proaches allow for the solution of a periodic steady state directly by introducing the periodicity

explicitly for the discretization of the time derivative term in the flow equations. Trading memory
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(a) CD history for the initial and final pitching wing de-
signs. The average values are also shown as horizontal
lines. The average drag is greatly reduced for the final
design.

(b) Pressure coe�cient comparison between the ONERA
M6 and the final design at the incidence of maximum drag
for the URANS case.

Figure 1.3: Drag coe�cient history and upper surface pressure contour comparison for a pitching
wing design.

cost for calculation time, the time-spectral methods greatly reduces the overall computational cost

for achieving a periodic steady state. Adjoint approaches for these periodic methods have been

e↵ectively employed for design, including the design of helicopter rotors [19, 90, 89].

As detailed above, a large amount of the previous work related to unsteady adjoints has been

discrete in nature, and while a discrete adjoint approach can often be more straightforward to imple-

ment, especially if AD is available, this dissertation presents advances in the continuous approach.

Flow unsteadiness, the motion of solid walls, or the presence of source terms in the governing equa-

tions can complicate matters, but the appeal of obtaining a surface formulation for shape design

gradients (without a dependence on volume mesh sensitivities) and the ability to tailor numerical

solution methods for the adjoint equations (to help mitigate numerical sti↵ness and other conver-

gence issues while avoiding memory overhead) make the continuous adjoint approach particularly

attractive.

This dissertation provides detailed derivations of the continuous adjoint equations, their admis-

sible boundary conditions, and the expressions for surface sensitivity in a formulaic structure for

multiple objective functions and governing equation systems. In particular, the goal is to derive

and present a new continuous adjoint surface formulation that is widely applicable by treating the

compressible, unsteady RANS equations while allowing for dynamic surfaces and the possibility of

source terms. In this manner, a new set of interesting engineering problems in unsteady flows can

be addressed using the continuous adjoint. In particular, shape design problems for rotating and
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pitching surfaces are investigated in this dissertation, including the design of a pitching wing in tran-

sonic, turbulent flow for minimum drag with lift and section thickness constraints. The continuous

adjoint formulation is successfully demonstrated for these test cases, and a sample of the results for

the pitching wing design are shown in Fig. 1.3.

From the general scenario of viscous, unsteady flow, the corresponding adjoint formulations for

inviscid, rotating frame, or even steady problems can be immediately recovered from the general

framework. Moreover, as the unsteady continuous adjoint equations are a system of PDEs, they can

be discretized in time using any approach (just as in space), which o↵ers even more flexibility. For

example, the equations can be immediately discretized with a time-spectral operator to give a time-

spectral adjoint approach. This and other discretization strategies are currently under investigation

and are included as future work.

1.4 Dissertation Layout

Chapter 2 briefly overviews the unsteady, compressible RANS equations, including the accompanying

boundary conditions and turbulence modeling. Chapter 3 contains a detailed derivation of the

unsteady continuous adjoint formulation for computing surface sensitivities. Chapter 4 details the

numerical implementation of the components needed for automatic shape design: numerical methods

for PDE analysis, geometry parameterization (design variable definition), mesh deformation, and

the optimization framework. Chapter 5 presents results for two- and three-dimensional optimal

shape design demonstrations for a range of problems governed by the non-inertial or unsteady flow

equations. Lastly, Chapter 6 summarizes the main conclusions of the dissertation and discusses

avenues for future research related to the unsteady adjoint formulation.

1.5 Contributions

The contributions of this dissertation are centered around the detailed derivation, implementation,

and application of a new unsteady continuous adjoint formulation for aerodynamic design on dy-

namic meshes. A general framework for the derivation enables the immediate recovery of adjoint

formulations for di↵erent scenarios, such as for design in unsteady inviscid flow, flow in rotating

reference frames, or steady flow.

More specifically and to the author’s knowledge, the first continuous adjoint surface formulation

based on shape calculus for the unsteady, compressible RANS equations in ALE form with a generic

source term is presented. Emphasis is placed on the simplification of terms using di↵erential geom-

etry, vector calculus, and information from the original governing equations such that the resulting

expressions can be easily implemented numerically. The derivation is complete with the accompany-

ing boundary conditions and surface sensitivity expressions for various functionals and adjustments

to the governing equations. As a direct consequence, the first viscous continuous adjoint surface

formulation for the governing equations expressed in a rotating frame is also recovered.
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A shape design framework has been implemented within an open-source software suite for the

numerical solution of PDEs and PDE-constrained optimization problems on general, unstructured

meshes. The core of the suite is a three-dimensional, finite volume solver within which the ALE form

of the governing equations (for solving unsteady flows on dynamic meshes) and the new unsteady

adjoint formulation have been implemented. Additional elements needed for shape design, such as

mesh deformation based on the linear elasticity equations, have also been incorporated into the suite.

Finally, the shape design framework is demonstrated through a collection of optimal shape design

examples for rotating and pitching problems in both two and three dimensions.



Chapter 2

Governing Equations for Fluid

Dynamics

In aeronautics, aerodynamic performance depends on the shape of the vehicle or body, and we can

predict the performance using a physical model for the fluid behavior in the presence of the vehicle.

The physical model is often a set of nonlinear PDEs that govern the motion for a fluid in a continuum.

By satisfying these governing equations, an engineer can predict aerodynamic performance in terms

of quantities such as integrated forces on the vehicle.

Due to the fact that integrated forces are typical choices for the objective and constraints within

an optimal shape design problem, we will need to consider the governing equations both for evaluating

the objective or constraints and for sensitivity analysis. Therefore, the flow equations are briefly

overviewed in this chapter before their use within the continuous adjoint derivation that follows in

Chapter 3.

2.1 Compressible, Unsteady Navier-Stokes Equations

Consider an aerodynamic surface S immersed in a fluid represented by a domain ⌦ ⇢ R3 with a

disconnected boundary that is divided into a far-field component �1 and the solid wall boundary S,

as seen in Fig. 2.1. The surface S represents the outer mold line of an aerodynamic body, such as a

wing or a full aircraft configuration. Throughout the domain in both space and time, the behavior

of the fluid is physically modeled by a particular set of coupled, nonlinear PDEs, represented by

R(U) = 0, where U = U(~x, t) is the state of the fluid at a point in ⌦ at a given instance in time.

In general, the positions of S and ⌦ may vary with time, which enables the analysis of aerodynamic

surfaces in arbitrary motion through the fluid.

13
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⌦
�1

S
~n

S

~n�1

Figure 2.1: Notional schematic of the flow domain ⌦ the boundaries �1 and S, as well as the
definition of the boundary surface normals.

The time-accurate, viscous, compressible flow around S is governed by the Navier-Stokes equa-

tions, which are statements of conservation for mass, momentum, and energy in the fluid. These con-

servation equations, along with a generic source term Q, can be expressed in an arbitrary Lagrangian-

Eulerian (ALE) [23] di↵erential form as
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⇢ is the fluid density, ~v = {v1, v2, v3}T 2 R3 is the flow speed in a Cartesian system of reference,

~u⌦ is the velocity of a moving domain (mesh velocity after discretization), E is the total energy per
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unit mass, p is the static pressure, c
p

is the specific heat at constant pressure, T is the temperature,

the viscous stress tensor can be written in vector notation as

¯̄⌧ = r~v + r~vT � 2

3
¯̄I(r · ~v), (2.4)

and

¯̄� = µ1
tot

¯̄⌧. (2.5)

Assuming a perfect gas with a ratio of specific heats, �, and gas constant, R, the pressure is deter-

mined from

p = (� � 1)⇢



E � 1

2
(~v · ~v)

�

, (2.6)

the temperature is given by

T =
p

⇢R
, (2.7)

and

c
p

=
�R

(� � 1)
. (2.8)

The second line in the equation system (2.1) represents the no-slip condition at a solid wall, the

third line represents an adiabatic condition at the wall, and the final line represents a characteristic-

based boundary condition at the far-field where the fluid state at the boundary is updated using

the state at infinity (free-stream conditions) depending on the sign of the eigenvalues [48]. Here, W

represents the characteristic variables.

For turbulent flows, we are also concerned with obtaining solutions of the unsteady Reynolds-

averaged Navier-Stokes equations (URANS), which will require the inclusion of a suitable turbulence

model. In accord with the standard approach to turbulence modeling based upon the Boussinesq

hypothesis [132], which states that the e↵ect of turbulence can be represented as an increased

viscosity, the total the viscosity is divided into laminar and turbulent components, or µ
dyn

and

µ
tur

, respectively. In order to close the system of equations, the dynamic viscosity µ
dyn

is assumed

to satisfy Sutherland’s law [131] as a function of temperature alone, or µ
dyn

= µ
dyn

(T ), and the

turbulent viscosity µ
tur

is computed via a selected turbulence model.

Turbulence and the mean flow become coupled by replacing the dynamic viscosity in the mo-

mentum and energy equations in the Navier-Stokes equations with

µ1
tot

= µ
dyn

+ µ
tur

, µ2
tot

=
µ

dyn

Pr
d

+
µ

tur

Pr
t

, (2.9)
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where Pr
d

and Pr
t

are the dynamic and turbulent Prandtl numbers, respectively. Here, µ2
tot

rep-

resents the e↵ective thermal conductivity. The viscous fluxes, viscosity, and e↵ective thermal con-

ductivity are decomposed and expressed in a nonstandard notation in order to obtain reduced

expressions in the calculus during the forthcoming continuous adjoint treatment.

The ALE form of the equations can be identified by the inclusion of domain movement in the

form of adjustments to the convective flux terms in ~F c

ale

and boundary conditions that involve the

velocity of the domain or surface ~u⌦. For example, this form of the equations enables the analysis of

problems with pitching, plunging, or rotating surfaces, to name a few options. The surface motion

can be prescribed or calculated in time by using the integrated loads on the surface coupled with an

additional set of equations governing the dynamics of the body. Numerical strategies for simulations

with dynamic meshes are discussed in Chapter 4. Note that, for problems on fixed grids (i.e.,

~u⌦ = 0), the system in (2.1) reduces to a purely Eulerian formulation.

Apart from those given in (2.1), additional boundary conditions are possible and later discussed.

In particular, we will also consider an isothermal no-slip condition on S, characteristic-based inlet

boundaries (stagnation, mass flow, or supersonic conditions prescribed), and characteristic-based

outlet boundaries (back pressure prescribed). Note that all boundary conditions takes into account

any motion of the boundaries.

For unsteady problems, the temporal conditions will be problem dependent, and in this disserta-

tion, we are interested in time-periodic flows where the initial and terminal conditions do not a↵ect

the time-averaged behavior over the time interval of interest, such as prescribed pitching, plunging,

or rotational motion of the domain at constant frequencies. Therefore, we use the free-stream fluid

state as the initial condition for the mean flow in conjunction with integration over multiple periods

of oscillation (to remove transient e↵ects by reaching a periodic steady state), and this is a typical

practice in external aerodynamics.

2.2 Turbulence Modeling

The turbulent viscosity, µ
tur

, is obtained from a turbulence model dependent on the flow state

and a set of new state variables for turbulence, ⌫̂, i.e., µ
tur

= µ
tur

(U, ⌫̂). Here, we assume that ⌫̂

is a single scalar variable obtained from a one-equation turbulence model. The Spalart-Allmaras

(S-A) model is one of the most common and widely used turbulence models for the analysis and

design of engineering applications a↵ected by turbulent flows, especially for applications in external

aerodynamics. The S-A model is used for all of the turbulent calculations in this dissertation, and

a brief description of it is given below.

2.2.1 Spalart-Allmaras Model

In the case of the one-equation Spalart-Allmaras [117] turbulence model, the turbulent viscosity is

computed as

µ
tur

= ⇢⌫̂f
v1, f

v1 =
�3

�3 + c3
v1

, � =
⌫̂

⌫
, ⌫ =

µ
dyn

⇢
. (2.10)
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The new variable ⌫̂ is obtained by solving the following transport equation in conjunction with the

mean flow equations:
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where the convective, viscous, and source terms are given by
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. Finally, the set of closure constants for the

model is given by
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w3 = 2, c

v1 = 7.1.

(2.13)

The physical meaning of the far-field boundary condition for the turbulent viscosity is the im-

position of some fraction of the laminar viscosity at the far-field. On viscous walls, ⌫̂ is set to zero,

corresponding to the absence of turbulent eddies very near to the wall.

2.3 Compressible, Unsteady Euler Equations

It is often useful to ignore viscous e↵ects when investigating and developing numerical methods

for the integration of convective fluxes or implementation of boundary conditions, especially when

dealing with the ALE form of the equations. Similarly, treating the inviscid form of the equations also

aids in the development of suitable numerical methods and boundary conditions for the continuous

adjoint, as we will see in later chapters.

The Navier-Stokes equations simplify to the Euler equations with the omission of the viscous

fluxes and an adjustment to the solid wall boundary condition, and these equations can be written

in an ALE di↵erential form as

8

>

<

>

:

R(U) = @U

@t

+ r · ~F c

ale

� Q = 0 in ⌦ t > 0

(~v � ~u⌦) · ~n = 0 on S

(W )+ = W1 on �1

(2.14)
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where

U =

8

>

<

>

:

⇢

⇢~v

⇢E

9

>

=

>

;

, ~F c

ale

=

8

>

<

>

:

⇢(~v � ~u⌦)

⇢~v ⌦ (~v � ~u⌦) + ¯̄Ip

⇢E(~v � ~u⌦) + p~v

9

>

=

>

;

, Q =

8

>

<

>

:

q
⇢

~q
⇢~v

q
⇢E

9

>

=

>

;

, (2.15)

which require fewer boundary conditions than the Navier-Stokes equations. In particular, the con-

dition on temperature is unnecessary, and the condition on the velocity at a solid wall has become

a flow tangency condition. Without viscosity, there is no mechanism to enforce a no-slip condition;

therefore, a no penetration condition is imposed.

2.4 Governing Equations in a Rotating Reference Frame

For the simulation of flow past certain aerodynamic bodies that operate under an imposed steady

rotation, including many turbomachinery, propeller, and rotor applications, it can be advantageous

to transform the system of governing equations into a non-inertial reference frame that rotates with

the body of interest [48, 49].

With this transformation, a flow field that is unsteady when viewed from the inertial frame

can be solved for in a steady manner, and thus much more e�ciently, without the need for time-

accurate integration or grid motion. This can be viewed as a simplification of the general unsteady

formulation above with the following applied to the systems in (2.1) or (2.14):

@U

@t
= 0, ~u⌦ = ~! ⇥ ~r, Q =

8

>

<

>

:

·
�⇢(~! ⇥ ~v)

·

9

>

=

>

;

, (2.16)

where ~! = {!
x

,!
y

,!
z

}T is the steady angular velocity of the reference frame and ~r is the position

vector pointing from a specified rotation center (x
o

, y
o

, z
o

) to a point (x, y, z) in the flow domain, or

~r = {(x � x
o

), (y � y
o

), (z � z
o

)}T. In this case, ~u⌦ is the velocity due to rotation, sometimes called

the whirl velocity. After including the terms in (2.16), the result is the absolute velocity formulation

of the non-inertial governing equations. A form based on the relative velocity ~v
r

, where ~v
r

= ~v �~u⌦,

is also possible but not considered here.

It is important to note that not all rotating applications can benefit from this solution approach.

The flow field must be steady in the rotating frame, and some conditions or geometric features, such

as relative surface motion, can cause unsteadiness for rotating bodies. For instance, if the incoming

flow velocity is not parallel to the axis of rotation, the conditions are no longer axisymmetric,

and the blades would not see a steady field during rotation. However, if desired, the non-inertial

governing equations can also be solved in an unsteady fashion. Typical applications for the non-

inertial equations might include hovering helicopter rotors, propellers in forward flight, or horizontal

axis wind turbines in isolation.

Due to their inclusion of domain velocity terms and the reduced computational cost for steadily
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rotating problems, the non-inertial governing equations o↵er an excellent intermediate stage in the

development of flow and adjoint solvers for unsteady flows on dynamic meshes. Grid velocities,

source terms, and the continuous adjoint formulation can all be tested with a steady problem in a

rotating frame in order to avoid the added cost of time-accurate integration, which can help speed up

the implementation and verification of the solvers. This was an approach taken for the development,

implementation, and application of the work within this dissertation.
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Chapter 3

The Unsteady Continuous Adjoint

Approach

This chapter presents the main contributions of the dissertation: the derivation of the unsteady

continuous adjoint approach using di↵erential geometry for problems with dynamic surfaces. De-

tailed derivations of the continuous adjoint equations, their admissible boundary conditions, and

the expressions for surface sensitivity in a formulaic structure for multiple objective functions and

governing equation systems are demonstrated below.

3.1 Optimal Shape Design Problem Statement

A typical shape optimization problem seeks the minimization of a cost function J(S) as chosen by the

designer, with respect to changes in the shape of the boundary S. For the present methodology, the

choice of cost function is not an arbitrary one, and important consequences of this will be discussed

later. Initially, we will concentrate on a generic functional defined as a time-averaged, integrated

quantity on the solid surface that depends on a scalar j evaluated at each point on S as a function

of the force on the surface, surface temperature, or heat flux through the surface.

We note that any changes to the shape of S will result in perturbations in the fluid state U in

the domain, and that these variations in the state are constrained to satisfy the system of governing

equations, i.e., R(U) = 0 must be satisfied for any candidate shape of S. Therefore, the optimal

shape design problem can be formulated as a PDE-constrained optimization problem:

min
S

J(S) =
1

T

Z

t

f

t

o

Z

S

j(~f, T, @
n

T,~n) ds dt

subject to: R(U) = 0, (3.1)

where T = t
f

� t
o

is the time interval of interest, ~f = (f1, f2, f3) is the time-dependent force on the

surface, T is the temperature, and ~n is the outward-pointing unit normal vector to the surface S.

21
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As we are in infinite-dimensional, functional space, a suitable space must be chosen for the

admissible shape parameterization. In this work, S is assumed to be continuously di↵erentiable

(C1), and the local shape perturbations applied to S can be described by

S0 = {~x + �S(~x)~n(~x) : ~x 2 S}, (3.2)

where S has been deformed to a new surface shape S0 by applying an infinitesimal profile deformation

�S in the local normal direction ~n at a point on the surface ~x, as shown in Fig. 3.1.

S

S0

~x

�S ~n

Figure 3.1: An infinitesimal shape deformation in the local surface normal direction.

The minimization (3.1) can be considered a problem in optimal control theory where the behavior

of the governing flow equation system is controlled by the shape of the boundary S. As we are

interested in gradient-based optimization, the goal is to compute the first variation of J(S) caused

by multiple, small perturbations of the surface and to use this sensitivity information to drive our

geometric changes in order to find an optimal shape for S.

3.2 Variation of the Functional

The first step is to evaluate the gradient of the functional in infinite-dimensional space with respect

to the infinitesimal boundary perturbations, also called the first variation when viewed from the

perspective of multidimensional calculus of variations, which gives

�J =
1

T

Z

t

f

t

o

Z

�S

j(~f, T, @
n

T,~n) ds dt +
1

T

Z

t

f

t

o

Z

S

�j(~f, T, @
n

T,~n) ds dt, (3.3)

where we have introduced
R

�S

(·) ds =
R

S

0(·) ds � R

S

(·) ds as a shorthand. Note that taking the

variation results in two separate terms: the first term depends on the variation of the geometry and

the value of the scalar function in the original state, while the second term depends on the original

geometry and the variation of the scalar function caused by the deformation.

Eqn. 3.3 can be further simplified by using formulas from di↵erential geometry and expressing

the first variation more explicitly in terms of the independent variables of the functional. It can

be shown [114, 104] that
R

�S

j ds =
R

S

(@
n

j � 2H
m

j)�S ds, where H
m

is the mean curvature of S

computed as (1 + 2)/2, where (1,2) are curvatures in two orthogonal directions on the surface.
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Using this relationship, we find that the first term on the right-hand side of Eqn. 3.3 becomes

Z

�S

j(~f, T, @
n

T,~n) ds =

Z

S

(@
n

j � 2H
m

j) �S ds

=

Z

S

✓

@j

@ ~f
· @

n

~f +
@j

@T
@

n

T +
@j

@(@
n

T )
@2

n

T � 2H
m

j

◆

�S ds, (3.4)

where from the chain rule and our functional definition,

@
n

j = ~n · rj(~f, T, @
n

T,~n) =
@j

@ ~f
· @

n

~f +
@j

@T
@

n

T +
@j

@(@
n

T )
@2

n

T. (3.5)

The second term on the right-hand side of Eqn. 3.3 can also be further manipulated by focusing on

�j:

�j(~f, T, @
n

T,~n) =
@j

@ ~f
· � ~f +

@j

@T
�T +

@j

@(@
n

T )
�(@

n

T ) � @j

@~n
· r

S

(�S), (3.6)

where we have used �~n = �r
S

(�S), which holds for small deformations [115]. Here, r
S

represents

the tangential gradient operator on S. Combining results from Eqns. 3.4 and 3.6 and introducing

them into Eqn. 3.3 gives an intermediate expression for the variation of the functional:

�J =
1

T

Z

t

f

t

o

Z

S

✓

@j

@ ~f
· @

n

~f +
@j

@T
@

n

T +
@j

@(@
n

T )
@2

n

T � 2H
m

j

◆

�S ds dt

+
1

T

Z

t

f

t

o

Z

S

✓

@j

@ ~f
· � ~f +

@j

@T
�T +

@j

@(@
n

T )
�(@

n

T ) � @j

@~n
· r

S

(�S)

◆

ds dt. (3.7)

3.2.1 Force-based Functionals

At this point, we might choose a force-based objective function that depends only on ~f in the

following way:

j(~f) = ~d · ~f, (3.8)

such that
@j

@ ~f
= ~d,

@j

@T
= 0,

@j

@(@
n

T )
= 0,

@j

@~n
= ~0, (3.9)

where ~d = ~d(~x, t) is the force projection vector, which can be chosen to relate the force on the

surface ~f to a desired quantity of interest. For unsteady problems, the force projection vector can

be a function of both space and time. The local normal vector ~n could also be chosen for ~d, but

additional terms involving @j

@~n

would arise. For many typical aerodynamic applications, the force
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projection vector is constant, and some likely candidates are

~d =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

⇣

1
C1

⌘

(cos ↵ cos �, sin ↵ cos �, sin �) C
D

Drag
⇣

1
C1

⌘

(� sin ↵, cos ↵, 0) C
L

Lift
⇣

1
C1

⌘

(� sin � cos ↵, � sin � sin ↵, cos �) C
SF

Side-force
⇣

1
C1C

D

⌘

(� sin↵� C

L

C

D

cos↵ cos�, � C

L

C

D

sin�, cos↵� C

L

C

D

sin↵ cos�) C

L

C

D

L/D
⇣

1
C1

⌘

(0, 0, 1) C
f

z

Z-force
⇣

1
C1L

ref

⌘

(�(y � y
o

), (x � x
o

), 0) C
m

z

Z-moment,

(3.10)

where C1 = 1
2⇢1v2

1A
z

, ⇢1 is the free-stream density, v1 is the freestream velocity, A
z

is the

reference area, Lref is a reference length for computing moments, ↵ is the free-stream angle of

attack, and � is the side-slip angle. In practice for a three-dimensional surface, the sum of all

positive components in the z-direction of the surface normal vectors is used for the projection A
z

. A

pre-specified reference area can also be used in a similar fashion, and this is an established procedure

in applied aerodynamics.

Care must be taken so that any constants used in the non-dimensionalization, such as the chord

lengths or projected areas that might appear in (3.10), are not exploited by the optimizer to reduce

the objective function. Changes to these values due to shape changes should be explicitly included

in the objective function during optimization, or rather, the design variable parameterization and/or

geometric constraints should strictly forbid changes to these quantities.

After choosing a force-based functional and imposing the relationships in Eqn. 3.9 above, we can

simplify the variation of the functional in Eqn. 3.7 to

�J =
1

T

Z

t

f

t

o

Z

S

⇣

~d · @
n

~f � 2H
m

(~d · ~f )
⌘

�S ds dt +
1

T

Z

t

f

t

o

Z

S

~d · � ~f ds dt, (3.11)

where f will take a di↵erent form depending on whether viscous or inviscid flow is governing.

Viscous Flow

For viscous flows, the force on the surface is composed of a pressure component along with a com-

ponent due to viscous stresses. It can be expressed as ~f = (¯̄Ip � ¯̄�) · ~n, and therefore,

� ~f = �
h

( ¯̄Ip � ¯̄�) · ~n
i

= (¯̄I�p � � ¯̄�) · ~n � ( ¯̄Ip � ¯̄�) · r
S

(�S), (3.12)

where we have again used �~n = �r
S

(�S). By introducing Eqn. 3.12, we can rearrange Eqn. 3.11 as

�J =
1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄I�p � � ¯̄�) · ~nds dt +
1

T

Z

t

f

t

o

Z

S

h

~d · @
n

~f � 2H
m

(~f · ~d )
i

�S ds dt

� 1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄Ip � ¯̄�) · r
S

(�S) ds dt. (3.13)
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The final term of Eqn. 3.13 can be readily integrated by parts to give

�J =
1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄I�p � � ¯̄�) · ~nds dt +
1

T

Z

t

f

t

o

Z

S

h

~d · @
n

~f � 2H
m

(~f · ~d )
i

�S ds dt

� 1

T

Z

t

f

t

o

Z

S

r
S

·
h

~d · ( ¯̄Ip � ¯̄�)�S
i

ds dt +
1

T

Z

t

f

t

o

Z

S

r
S

·
h

~d · ( ¯̄Ip � ¯̄�)
i

�S ds dt

=
1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄I�p � � ¯̄�) · ~nds dt

+
1

T

Z

t

f

t

o

Z

S

n

r
S

·
h

~d · ( ¯̄Ip � ¯̄�)
i

+ ~d · @
n

~f � 2H
m

(~f · ~d )
o

�S ds dt, (3.14)

where we have rearranged and used the identity
R

S

r
S

· (·) ds = 0 on a closed surface [114] in going

from the first to second lines. Further simplifications can be made in the braced portion of the

integrand in the final term of Eqn. 3.14:

r
S

·
h

~d · ( ¯̄Ip � ¯̄�)
i

+ ~d · @
n

~f � 2H
m

(~f · ~d )

= r
S

·
h

~d · ( ¯̄Ip � ¯̄�)
i

+ @
n

(~d · ~f ) � 2H
m

(~d · ~f ) � ~f · @
n

~d

= r
S

·
h

~d · ( ¯̄Ip � ¯̄�)
i

+ @
n

h

~d · ( ¯̄Ip � ¯̄�) · ~n
i

� 2H
m

h

~d · ( ¯̄Ip � ¯̄�) · ~n
i

� ( ¯̄Ip � ¯̄�) · ~n · @
n

~d

= r ·
h

~d · ( ¯̄Ip � ¯̄�)
i

� ( ¯̄Ip � ¯̄�) · ~n · @
n

~d, (3.15)

where we have used the product rule in going from the first to second lines and the divergence

operator written in local coordinates, or r · ~q = r
S

· ~q + @
n

(~q · ~n) � 2H
m

(~q · ~n) with ~q being an

arbitrary vector that, in this case, is described by ~d · ( ¯̄Ip � ¯̄�). Substituting the result of Eqn. 3.15

back into Eqn. 3.14 gives a near final expression for the variation of the functional,

�J =
1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄I�p � � ¯̄�) · ~nds dt +
1

T

Z

t

f

t

o

Z

S

n

r ·
h

~d · ( ¯̄Ip � ¯̄�)
i

� ( ¯̄Ip � ¯̄�) · ~n · @
n

~d
o

�S ds dt.

(3.16)

Lastly, the final term in Eqn. 3.16 can be simplified for easier calculation by using information from

the Navier-Stokes equations. In this manner, we can remove higher order derivative terms that can

lead to implementation issues. Expanding the divergence term gives

r ·
h

~d · ( ¯̄Ip � ¯̄�)
i

= r~d : ( ¯̄Ip � ¯̄�) + ~d · r · ( ¯̄Ip � ¯̄�)

= r~d : ( ¯̄Ip � ¯̄�) + ~d · (rp � r · ¯̄�)

= r~d : ( ¯̄Ip � ¯̄�) + ~d · [~q
⇢~v

� @
t

(⇢~v)] , (3.17)

where in going from the third to fourth line of Eqn. 3.17, we have used the momentum equation writ-

ten on the surface (including unsteadiness and source term e↵ects). The variation of the functional
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can then be written concisely as

�J =
1

T

Z

t

f

t

o

Z

S

~d · ( ¯̄I�p � � ¯̄�) · ~n ds dt

+
1

T

Z

t

f

t

o

Z

S

n

~d · [~q
⇢~v

� @
t

(⇢~v)] + r~d : ( ¯̄Ip � ¯̄�) � ( ¯̄Ip � ¯̄�) · ~n · @
n

~d
o

�S ds dt. (3.18)

Note that, for a steady problem without source terms and with a constant force projection vector,

the second integral in Eqn. 3.18 vanishes.

Inviscid Flow

For inviscid flows, the expression for the force on the surface reduces to ~f = ¯̄Ip · ~n, as the lack of

viscosity has removed any viscous forces on the surface, which is consistent with the flow tangency

boundary condition on the solid wall, or ~v · ~n = 0. Noting this change in the definition of ~f , we

recover the following for its variation:

� ~f = �
⇣

¯̄Ip · ~n
⌘

= ¯̄I�p · ~n � ¯̄Ip · r
S

(�S). (3.19)

Starting from Eqn. 3.11 and using Eqn. 3.19, we can perform a nearly identical procedure as in the

viscous case (see Eqns. 3.13–3.16) to arrive at the following reduced form:

�J =
1

T

Z

t

f

t

o

Z

S

~d · ¯̄I�p · ~nds dt +
1

T

Z

t

f

t

o

Z

S

h

r ·
⇣

~d · ¯̄Ip
⌘

� ¯̄Ip · ~n · @
n

~d
i

�S ds dt. (3.20)

Lastly, the final integral in Eqn. 3.20 can again be simplified by expanding the divergence term,

r ·
⇣

~d · ¯̄Ip
⌘

= r~d : ¯̄Ip + ~d · rp = p r · ~d + ~d · rp, (3.21)

and the variation of the functional can then be written concisely as

�J =
1

T

Z

t

f

t

o

Z

S

~d · ¯̄I�p · ~n ds dt +
1

T

Z

t

f

t

o

Z

S

⇣

~d · rp + p r · ~d � ¯̄Ip · ~n · @
n

~d
⌘

�S ds dt. (3.22)

3.2.2 Temperature-based Functionals

By nature, temperature functionals only make sense in the context of viscous flows where viscous

e↵ects cause heat transfer at the surface. Indeed, only for the Navier-Stokes equations is a boundary

condition for the temperature on the surface even required. Typically, one of two boundary condi-

tions is chosen for the temperature on the surface: an imposition of the heat flux (related to the

normal gradient of the temperature, @
n

T ), or an imposition of the surface temperature directly (an

isothermal condition). In the next section, we will present the results for a heat flux functional.
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Heat Flux Design

In order to perform shape design for controlling the heat flux on the surface (minimizing the total

integrated heat flux, for instance), an objective function that depends on @
n

T can be chosen as

j(@
n

T ) = c @
n

T = c (~n · rT ), (3.23)

such that the other terms in the intermediate expression for the functional variation in Eqn. 3.7

become
@j

@ ~f
= 0,

@j

@T
= 0,

@j

@(@
n

T )
= c,

@j

@~n
= c rT, (3.24)

where c is an arbitrary constant.

From the relationships in Eqn. 3.24, the variation of the functional in Eqn. 3.7 is simplified to
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(�S)) ds dt, (3.25)

and the final term in Eqn. 3.25 can be integrated by parts to give
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n

T � 2H
m

(c @
n

T )
�

�S ds dt, (3.26)

where we have rearranged and used the identity
R

S

r
S

· (·) ds = 0 on a closed surface [114] in going

from the first to second lines. Recognizing that the divergence operator in local coordinates can be

applied, or r · ~a = r
S

· ~a + @
n

(~a · ~n) � 2H
m

(~a · ~n) with ~a = c rT in this case, yields a simplified

form for the variation of the functional:

�J =
1

T

Z

t

f

t

o

Z

S

c �(@
n

T ) ds dt +
1

T

Z

t

f

t

o

Z

S

r · (c rT )�S ds dt. (3.27)

3.3 The Adjoint Approach to Optimal Design

As we are interested in gradient-based methods, the shape optimization process will search for a

stationary point of the functional variation, or �J = 0, which represents a first-order optimality

condition. In typical practice, finding a minimum involves both computing the value and gradient

of the functional and supplying this information to a suitable optimization method that will search

the design space with appropriate step sizes until satisfying the optimality condition. The functional

gradient can be obtained through a number of sensitivity analysis techniques.

In the case of a force-based functional in viscous flow, for instance, the integrated force on the

surface in Eqn. 3.8 and the functional variation in Eqn. 3.18 are required. While many of the
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quantities required to evaluate J and �J are readily available from a single solution of the governing

equations in the domain (e.g., the pressure and viscous stress tensor on the surface), perturbations

of certain flow quantities are also present, and obtaining the variation of these variables for multiple,

arbitrary surface deformations �S is not as straightforward. In fact, as expressed in Eq. 3.18,

calculating �J for a number N of shape deformations would require N solutions of the linearized

governing equations in order to compute the values of �p and � ¯̄� that correspond to each deformation.

This is a direct approach, and it is analogous to the finite di↵erence approach to computing gradients

discussed in Chapter 1, especially in terms of the computational cost.

Ideally, the explicit dependence on �p and � ¯̄� in the variation of the functional would be removed,

so that the variation due to an arbitrary number of deformations can be computed in a much more

e�cient manner. This suggests the use of an analytic method for sensitivity analysis that can

eliminate these perturbations and leads to the adjoint method.

Following the adjoint approach to optimal design, Eqn. 3.1 can be transformed into an un-

constrained optimization problem by including the inner product of an adjoint state vector, or

 =  (~x, t), and the governing equations integrated over the domain (space and time) to the origi-

nal functional in order to form the Lagrangian:

J =
1

T

Z

t

f

t

o

Z

S

j(~f, T, @
n

T,~n) ds dt � 1

T

Z

t

f

t

o

Z

⌦
 TR(U) d⌦ dt, (3.28)

where we have introduced the adjoint variables, which operate as Lagrange multipliers and are

defined as
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. (3.29)

The adjoint state vector contains an co-state variable for each conservative variable in the original

governing equations. Note that, because the flow equations must be satisfied in the domain, or

R(U) = 0, the original functional in Eqn. 3.1 and the Lagrangian in Eqn. 3.28 are equivalent.

Moreover, because it is equal to zero, it is equivalent to add or subtract the second term in the

Lagrangian, and we will choose to subtract for convenience in signs. To find the gradient information

needed to minimize the objective function, we repeat the process of taking the first variation of

Eqn. 3.28:

�J = �J � 1

T

Z

t

f

t

o

Z

⌦
 T�R(U) d⌦ dt, (3.30)

where the variation of the original functional �J remains unchanged from the expressions derived

above and a new term involving the linearized governing equations �R(U) has appeared. The goal
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now is to perform manipulations involving the additional analytic sensitivity information provided

by the linearized equations (along with linearized forms of the boundary conditions) that will remove

any dependence on variations of the flow variables. In this manner, the cost of evaluating both J

and �J will become independent of the number of surface perturbations (design variables), thus

o↵ering an e�cient method for sensitivity analysis in a large design space.

3.4 The Linearized Governing Equations

The second term on the right-hand side of Eqn. 3.30 can be expanded by including the version of the

governing equations that has been linearized with respect to the small perturbations of the surface,

or �R(U). The deformation of the surface will induce perturbations in the solution, or �U , as well

as in the gradient of the solution, or �(rU). To complete the linearized system of equations, the

boundary conditions corresponding to the original governing system must also be linearized.

3.4.1 Linearized Navier-Stokes Equations in ALE Form

First, consider a perturbation to the unsteady, compressible Navier-Stokes equations in ALE form:

�R(U, rU) = �

✓
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@U
�U

� r · µk
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where we have introduced the following Jacobian matrices that can be found in the appendix:
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i, j = 1 . . . 3, k = 1, 2.

(3.32)

In the second line of Eqn. 3.31, the terms involving the domain velocity ~u⌦ have been separated

from the traditional inviscid convective fluxes, ~F c. In this work, we assume that the perturbations

of the surface do not a↵ect the value of the viscosity, or �µk

tot

= 0. This is known as the constant, or

frozen, viscosity assumption, and it is commonly used with the adjoint approach in order to reduce

the complexity inherent in including sensitivity information for the viscosity. This approximation

removes the di�culty of treating a turbulence model in the formulation at the cost of some accuracy

in the resulting sensitivities. The validity of this assumption is problem-dependent, but in a wide

variety of situations, it leads to accurate sensitivity information.

Under the frozen viscosity assumption, the linearized governing equations become

�R(U, rU) =
@

@t
(�U) + r ·

⇣

~Ac � ¯̄I5~u⌦ � µk

tot

~Avk

⌘

�U � r · µk

tot

¯̄Dvk�(rU) � @Q
@U

�U = 0 in ⌦.

(3.33)

3.4.2 Linearized Boundary Conditions

The linearized boundary conditions of the governing flow equations are also be required in order to

remove any dependence on flow variations. For viscous flow, the no-slip and temperature boundary

conditions are treated, and for inviscid flow, the flow tangency boundary condition is considered. In

all cases, a characteristic-based condition is imposed at far-field, inlet, and outlet boundaries. The

details for linearizing each of these boundary conditions are given in the following sections.

Linearized No-Slip Wall Boundary Condition

For viscous flows, we start with the no-slip boundary condition for a surface in arbitrary motion:

(~v � ~u⌦) = 0 on S, (3.34)

where ~v is the absolute flow velocity and ~u⌦ is the local velocity of the domain in motion. Consider

linearization of (3.34) with respect to small perturbations in the surface �S, which gives

(~v � ~u⌦)0 = (~v � ~u⌦) + �(~v � ~u⌦) + @
n

(~v � ~u⌦)�S, (3.35)
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where the second term on the right hand side of Eqn. 3.35 represents the change in the flow solution

induced by the deformation and the third term represents the change due solely to the geometry of

the deformation. Keeping in mind that the linearized boundary condition must also equal zero, we

can rearrange Eqn. 3.35 to give a useful result for the continuous adjoint derivation:

�~v = �@
n

(~v � ~u⌦)�S on S, (3.36)

where, in order to simplify, we have used the original boundary condition (3.34) and �~u⌦ = 0.

Linearized Flow Tangency Boundary Condition

For inviscid flows, we start with the flow tangency boundary condition:

(~v � ~u⌦) · ~n = 0 on S, (3.37)

where ~v is again the absolute flow velocity, ~u⌦ is the local velocity of the domain in motion, and ~n

is the local normal of the surface. Consider linearization with respect to small perturbations in the

surface �S for both the velocity and the normal terms separately:

(~v � ~u⌦)0 = (~v � ~u⌦) + �(~v � ~u⌦) + @
n

(~v � ~u⌦)�S (3.38)

and

(~n)0 = ~n + �~n, (3.39)

where the second term on the right hand side of Eqn. 3.38 represents the change in the flow solution

caused by the deformation and the third term represents the change due solely to the geometry of

the deformation. The normal in Eqn. 3.39 does not involve any flow variables, so the change is due

to the deformation alone. The complete linearized flow tangency boundary condition can then be

obtained by taking the dot product of the two linearized components:

(~v � ~u⌦)0 · (~n)0 = {(~v � ~u⌦) + �~v � �~u⌦ + @
n

(~v � ~u⌦)�S} · (~n + �~n)

= (~v � ~u⌦) · �~n + �~v · ~n + @
n

(~v � ~u⌦)�S · ~n, (3.40)

where, in order to simplify, we have used the original boundary condition (3.37), �~u⌦ = 0, and the

approximation that any products of variations are negligible. Since the linearized version of the

boundary condition must also equal zero, Eqn. 3.40 can be rearranged as

�~v · ~n = �(~v � ~u⌦) · �~n � @
n

(~v � ~u⌦)�S · ~n. (3.41)



32 CHAPTER 3. THE UNSTEADY CONTINUOUS ADJOINT APPROACH

Finally, we apply the relationship �~n = �r
S

(�S), which holds for small deformations, and the result

is a form more directly related to the imposed surface perturbations:

�~v · ~n = (~v � ~u⌦) · r
S

(�S) � @
n

(~v � ~u⌦)�S · ~n on S. (3.42)

Linearized Heat Flux Wall Boundary Condition

Given its similar form, the linearization of the heat flux boundary condition will mirror that of the

flow tangency condition. Recall the original heat flux condition, or

@
n

T = ~n · rT = q
n

on S, (3.43)

where T is the temperature, ~n is the local normal of the surface, and q
n

is the imposed heat flux in

the normal direction (q
n

= 0 corresponds to an adiabatic wall). Consider linearization with respect

to small perturbations in the surface �S for both the temperature and the normal terms separately:

(rT )0 = rT + �(rT ) + @
n

(rT )�S (3.44)

and

(~n)0 = ~n + �~n, (3.45)

where the second term on the right-hand side of Eqn. 3.44 represents the change in the flow solution

caused by the deformation and the third term represents the change due solely to the geometry of

the deformation. The normal in Eqn. 3.45 does not involve any flow variables, so the change is due

to the deformation alone. The complete linearized boundary condition can be obtained by taking

the dot product of the two linearized components:

(rT )0 · (~n)0 = [rT + �(rT ) + @
n

(rT )�S] · (~n + �~n)

= rT · �~n + �(rT ) · ~n + @2
n

(T )�S, (3.46)

where, in order to simplify, we have used the original boundary condition (3.43) and the approx-

imation that any products of variations are negligible. As the linearized version of the boundary

condition must also equal the imposed normal heat flux q
n

, Eqn. 3.46 can be rearranged as

�(rT ) · ~n = �(rT ) · �~n � @2
n

(T )�S. (3.47)

Again, using the relationship �~n = �r
S

(�S), which holds for small deformations, and the fact that

in a continuum �(rT ) = r(�T ), gives

@
n

(�T ) = rT · r
S

(�S) � @2
n

(T )�S on S. (3.48)
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Linearized Isothermal Wall Boundary Condition

The typical isothermal wall boundary condition can be expressed as

T = T
o

on S, (3.49)

where T is the temperature and T
o

is the imposed wall temperature for the isothermal condition.

Consider linearization with respect to small perturbations in the surface �S:

T 0 = T + �T + @
n

(T )�S, (3.50)

where the second term on the right-hand side of Eqn. 3.50 represents the change in the flow solution

caused by the deformation and the third term represents the change due solely to the geometry of

the deformation. As the linearized version of the boundary condition must also equal the imposed

isothermal condition, Eqn. 3.50 can be rearranged to give a useful result for the continuous adjoint

derivation:

�T = �@
n

(T )�S on S, (3.51)

where, in order to simplify, we have used the original boundary condition (3.49).

Linearized Characteristic-based Boundary Condition

At far-field, inlet, or outlet boundaries, a typical characteristic-based boundary condition is applied

in the direct problem, where the solution state is updated based on the sign of the eigenvalues from

the convective flux Jacobian. As seen in the original governing equations (2.1), the boundary state

is imposed for any incoming characteristics. Therefore, for the linearized problem, we impose

(�W )+ = 0 on �1, (3.52)

where (�W )+ represents the incoming characteristics at the boundary. The treatment of characteristic-

based boundary conditions for the adjoint problem is discussed in detail later in this chapter.

3.4.3 Complete System of Linearized Equations

Here, we collect the final expressions above in order to summarize the complete systems of linearized

equations for the viscous and inviscid problems. Given a perturbation in the surface �S, these

equations can be solved for the resulting perturbation in the flow solution �U .
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Linearized Navier-Stokes Equations

By grouping the results from the linearization of the Navier-Stokes equations in ALE form and their

boundary conditions from (3.33), (3.36), (3.48), and (3.52), one obtains
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(3.53)

where we have assumed the use of an adiabatic wall condition.

Linearized Euler Equations

The linearized Euler equations can be easily recovered by removing the viscous terms from the

linearized Navier-Stokes equations and applying the appropriate flow tangency boundary condition

from (3.42):
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S

(�S) � @
n
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(�W )+ = 0 on �1.

(3.54)

3.5 The Unsteady Continuous Adjoint Equations

This section contains a detailed derivation of the time-accurate, viscous, continuous adjoint equations

along with their suitable boundary conditions. The process will involve introducing the results from

the sections concerning the variation of the functional and the linearized governing equations.

3.5.1 Obtaining the Adjoint Equations

After linearizing the governing equations, we can now substitute Eqn. 3.33 into Eqn. 3.30 to produce

�J = �J � 1
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T

Z

t
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t
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Z
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 T @Q

@U
�Ud⌦ dt. (3.55)

If we can remove any dependence on variations of the flow variables, or �U , the variation of the

objective function for multiple surface deformations can be found without the need for multiple

solutions of the governing equations. As the flow perturbations are by definition arbitrary (non-zero),

the general strategy for their removal is to isolate and factor these terms out of any expressions such

that their multiplier can be set to zero, thereby forcing any terms involving �U to vanish. We now

perform manipulations to remove this dependence, and integration by parts is the tool that enables
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isolation of the flow perturbations by moving any derivatives o↵ of these terms. We will consider

each of the major terms in Eqn. 3.55 separately first and then combine the resulting expressions.

As an aside, the correct procedure for integration by parts in any dimension can always be

deduced by returning to the basic concept behind it: form the derivative of a product, apply the

appropriate product rule to maintain the order of the resulting tensor (i.e., scalars remain scalars,

vectors remain vectors, etc.), integrate both sides of the resulting equation, and rearrange the result.

The familiar formula for integration by parts is recovered in one dimension. However, in multiple

dimensions, the Divergence theorem will be used to form a surface integral (assuming a smooth

integrand). For clarity in the adjoint derivation, we are explicit about this procedure below.

First, consider the integral involving the time derivative in Eqn. 3.55. The linearization procedure

for the governing equations has caused �U to appear within a time derivative, so integration by parts

is used to isolate the perturbations. The integration by parts procedure gives
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�U d⌦ dt, (3.56)

where we have formed the product rule, integrated in space and time in going from the first to second

lines, and changed the order of integration and rearranged in going to the third line. The time

derivative has been successfully moved from the flow perturbations to the adjoint state. However, a

new term involving the initial and final states of  and �U has emerged. Note that the integration by

parts procedure has also produced a negative sign in front of the integral involving a time derivative

of the adjoint state, and the implications of this are discussed later.

The third term on the right-hand side of Eqn. 3.55 contains the Jacobians of the convective terms

from the original system along with an additional term involving the Jacobian of the viscous fluxes

with respect to the conservative variables. The integration by parts procedure for this term results
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in the following:
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(3.57)

where we have formed the product rule, integrated in space and time in going from the first to

second lines, and used the divergence theorem and rearranged in going to the third line. The spatial

derivative has been successfully moved from the flow perturbations to the adjoint state vector, but

a surface integral over the disconnected boundary of the domain has also appeared.

Lastly, the fourth term on the right-hand side of Eqn. 3.55 containing the Jacobian of the viscous

fluxes with respect to the gradient of the flow variables is treated. Due to the appearance of a second

derivative on �U , isolating the perturbation requires integrating by parts twice. The first integration

by parts procedure gives
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where we have again formed the product rule, integrated in space and time in going from the first to

second lines, and used the divergence theorem and rearranged in going to the third line. Integration

by parts is required once more for the final term in Eqn. 3.58. Noting that �(rU) = r(�U) in a
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continuum and repeating the same procedure yields
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Now that we have considered each of the integrals involving derivatives of perturbations in

Eqn. 3.55, the results can be collected from Eqns. 3.56, 3.57, 3.58, and 3.59 and substituted back

into the original expression for the variation of the objective function:
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(3.60)

where, as a shorthand,

B1 =  T
⇣

~Ac � ¯̄I5~u⌦

⌘

�U · ~n, (3.61)

B2 =  Tµk

tot

~Avk�U · ~n + Tµk

tot

¯̄Dvk · r(�U) · ~n, (3.62)

and

B3 = r T · µk

tot

¯̄Dvk�U · ~n. (3.63)

At this point, the flow perturbations have been removed from derivatives and isolated, but �J will

not be readily computable until all terms containing �U are eliminated. For instance, the final

integral in Eqn. 3.60 can be eliminated by forcing to zero the expression in brackets throughout the

entire domain (space and time). This is the first appearance of the system of PDEs known as the

adjoint equations, and their satisfaction becomes a requirement for computing the variation of the

Lagrangian. However, the admissible boundary conditions needed for satisfying the adjoint system

have not yet been specified, and this topic is discussed in the following sections.
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3.5.2 Evaluating the Adjoint Boundary Integrals

Suitable boundary conditions for the adjoint system can be found by considering the remaining

boundary integrals in Eqn. 3.60 while introducing the linearized boundary conditions from the

governing equations where necessary. The evaluation of the remaining boundary integrals is detailed

below.

Detailed Evaluation of the Integral Involving Time

By assuming an unsteady flow with time-periodic behavior (the cost function does not depend on

t
f

), we can impose

 (~x, t
o

) = 0 (3.64)

and

 (~x, t
f

) = 0, (3.65)

which forces the second term on the right-hand side of Eqn. 3.60 to vanish. While we are treating

problems featuring time-periodicity in this work, this is not a requirement. Due to a reversal of

the characteristic speeds in the adjoint problem (reverse time integration), we can impose an initial

zero value for the adjoint state. This corresponds to a zero state at the final physical time, or

 (~x, t
f

) = 0. However, the term involving
⇥

 T�U
⇤

t

o

in Eqn. 3.60 must be included or forced to

vanish with an admissible choice for  (~x, t
o

).

Detailed Evaluation of Boundary Integrals Involving B1 on S

The expression for B1 in Eqn. 3.61 contains the flow perturbations �U , and given our knowledge

of the convective flux Jacobian, it can be evaluated explicitly. For clarity, the manipulations are

performed starting in two dimensions, but then the resulting expressions are immediately generalized

to three dimensions using vector notation. Recalling also that this evaluation occurs on the surface,

we impose the solid wall boundary condition for simplification. With a0 = (��1) and � = (��1) |~v|2
2
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defined for convenience, the expression can be evaluated and simplified as follows:
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where v
n

= (~v � ~u⌦) · ~n1 as a shorthand, M = @U

@V

is the transformation matrix from conservative

to primitive variables (given in the appendix), �V = {�⇢, �~v, �p}T is the vector of primitive variable

perturbations, and # = (⇢ 
⇢

+ ⇢~v · ~'+ ⇢H 
⇢E

) as a shorthand.

Note that, in going from the fourth to the fifth line of Eqn. 3.66, we have used the solid wall

boundary condition to remove any term that includes (~v � ~u⌦) · ~n, and that the final result remains

the same for both viscous and inviscid flow. For flows on stationary domains, the term involving

~v · ~n in Eqn. 3.66 vanishes.

Detailed Evaluation of Boundary Integrals Involving B2 on S

A simplification for the terms involving B2 from Eqn. 3.62 can be made by recalling the definition

of the variation of the viscous flux vector under the frozen viscosity assumption:
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@(rU)
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¯̄Dvk · �(rU). (3.67)
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Introducing this definition into Eqn. 3.62 and again noting that �(rU) = r(�U) in a continuum

allows for simplification without the need for extensive algebra:
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Note that, for flows on stationary domains, the second term on the right-hand side of Eqn. 3.68

vanishes due to the no-slip condition (~v = 0).

Detailed Evaluation of Boundary Integrals Involving B3 on S

The expression for B3 from Eqn. 3.63 can be divided into components related to the viscous stresses

(B1
3) and heat transfer (B2

3) as

B3 = Bk

3 = B1
3 + B2

3 , (3.69)

and these terms are considered separately in two dimensions before generalizing to three dimensions

using vector notation. First, we expand Bk

3 in two dimensions:
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where
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}, (3.72)

and �U = {�⇢, �(⇢v1), �(⇢v2), �(⇢E)}T. Each term in Eqn. 3.70 can be evaluated given our knowledge

of the Jacobian of the viscous flux vector with respect to the gradient of the conservative variables
¯̄Dvk (see the appendix) as well as the behavior of the governing equations at the no-slip wall.

Viscous Stress Component Here, the terms involving the Jacobian of the viscous stresses ¯̄Dv1

that make up B1
3 in Eqn. 3.69 are considered. More specifically, the first term on the right-hand

side of Eqn. 3.70 is evaluated in a detailed manner as an example before systematically extending

and simplifying the remaining terms:
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(3.73)

It can be shown in a similar fashion that the other three terms on the right-hand side of Eqn. 3.70

for k = 1 can be simplified to give
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The results from Eqns. 3.73–3.76 can be introduced into Eqn. 3.70 with k = 1, combined, and

organized by the normal components and velocity perturbations as
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and the final result can be immediately generalized in vector notation as
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where we have introduced ¯̄⌃' = µ1
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Heat Transfer Component The same process for the terms involving ¯̄Dv2 that make up B2
3

in Eqn. 3.69 can also be performed. Again, the first term on the right-hand side of Eqn. 3.70 is

evaluated in a detailed manner in two dimensions as an example before systematically extending
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and simplifying the remaining terms:
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(3.79)

Recalling the definition of the energy, or E = |~v|2
2 + P

⇢(��1) , we can write the total variation of the

energy as
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p

⇢2(� � 1)
�⇢, (3.80)

and substituting the expressions for the energy and its variation from Eqn. 3.80 into Eqn. 3.79 yields
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Ideally, we would like to further simplify the remaining variations if possible, and by using the

equation of state for a perfect gas in Eqn. 2.7 and the relationship in Eqn. 2.8, we can relate the

variations in pressure and density to a variation in the temperature:
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Upon substitution into Eqn. 3.81, we arrive at a final expression:
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Similarly, the other three terms on the right hand side of Eqn. 3.70 can be simplified to give
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and after combining Eqns. 3.83–3.86, we can immediately generalize the result for B2
3 to vector

notation as
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Total Contribution from B3 The contribution from evaluating the surface integral involving

term B3 is the sum of the stress tensor (B1
3) and heat transfer (B2

3) components derived above.

Therefore, summing the results in Eqns. 3.78 and 3.87 gives

B3 = B1
3 + B2

3 = ~n ·
⇣

¯̄⌃' + ¯̄⌃ ⇢E

⌘

· �~v + µ2
tot

c
p

@
n

( 
⇢E

)�T (3.88)

Detailed Evaluation of Boundary Integrals on �1

Each of the boundary integrals involving B1, B2, and B3 is over the entire disconnected boundary

of the domain, which includes the far-field. Here, we assume that the far-field is far enough removed

from the surface S that the viscous perturbation terms (B2 and B3) are negligible on this boundary.

This leaves only the convective boundary term B1 at the far-field, and we would like to remove any

contributions from this integral.

The integral over �1 involving B1 in Eqn. 3.60 will indeed vanish if the scalar integrand is zero

at every point on the boundary with each physical time step, or

 T
⇣

~Ac � ¯̄I5~u⌦

⌘

· ~n1 �U = 0. (3.89)

Therefore, we seek the adjoint state  at the boundary that eliminates any contribution from this
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Table 3.1: Number of physical (P) and numerical (N) boundary conditions required for the direct
and adjoint problems in three dimensions (the state vector U has five components).

Supersonic Inflow Subsonic Inflow Subsonic Outflow Supersonic Outflow
Direct 5 P, 0 N 4 P, 1 N 1 P, 4 N 0 P, 5 N
Adjoint 0 P, 5 N 1 P, 4 N 4 P, 1 N 5 P, 0 N

integral to the variation of the functional by satisfying the preceding expression. A common strategy

for the removal of this integral is the imposition of a homogeneous adjoint boundary condition:

 = 0. While this does force Eqn. 4.61 to hold, it may be an over-specification and does not take

into account the mathematical character of the equations at the boundary. Compatibility between

the governing PDEs and the boundary conditions should be maintained in order to avoid issues

related to solution accuracy or code convergence.

The concept of physical and numerical boundary conditions, as discussed by Hirsch [48], is useful

when considering the behavior of the governing PDEs and their adjoint equations at a boundary.

First, the convective flux Jacobian ~Ac is diagonalized, and the resulting eigenvalues represent the

characteristic speeds for the propagation of information within the fluid. Note that with the ALE

form of the equations, the characteristic speeds also include the domain velocity ~u⌦. Incoming

characteristics (negative eigenvalues) correspond to the propagation of information originating at

the boundary into the interior of the domain. At these locations, physical boundary conditions,

such as free-stream conditions, stagnation conditions, or back pressure, are prescribed. Outgoing

characteristics (positive eigenvalues) correspond to information propagation originating from the

interior out of the domain. Here, numerical boundary conditions are imposed that extrapolate the

characteristic variable information from within the domain in order to complete the update to the

state vector at the boundary, i.e., the number of physical and numerical conditions imposed must

total the length of the state vector.

It is important to highlight that the sign of the characteristic velocities has been flipped in the

adjoint problem, causing characteristic information to propagate in the reverse direction. This sign

reversal occurs due to the integration by parts procedure during the adjoint derivation, as evidenced

by the appearance of a negative sign in front of the final term of Eqn. 3.57. The result is that

the required type of boundary conditions for the direct and adjoint problem are also reversed, i.e.,

physical conditions in the direct problem become numerical ones in the adjoint problem and vice

versa, and the reversal implies the existence of a complementary set of conditions for the adjoint

problem. This relationship is summarized for inflow and outflow boundaries in Table 3.1.

Based on this idea, Giles and Pierce [40] proposed suitable physical adjoint boundary condi-

tions involving the characteristic speeds based on a manipulation of Eqn. 4.61 after introducing

the diagonalization of the flux Jacobian. Recent work by Hayashi et al. [46] advances the notion

of characteristic-based boundary conditions for the adjoint equations by connecting the direction

of information propagation to the imposition of physical conditions at the boundaries in the di-

rect problem. More specifically, rather than impose conditions using the characteristic variables,
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one should consider the realizable perturbations in the flow solution, �U , allowed at the bound-

aries given the particular choice of physical boundary conditions in the direct problem. The latter

derivation approach will now be further detailed and extended in systematic fashion.

Consider the far-field boundary �1 to be split into a subsonic inflow and subsonic outflow region

for the direct problem. At the inflow in three dimensions, four physical conditions can be prescribed,

and for clarity in the derivation, we choose to specify mass flow (⇢ and ~v) at this boundary. At the

outlet boundary, only one physical condition can be imposed, and we choose the typical imposition

of back pressure (p). Therefore, the type of physical conditions chosen for the direct problem has

constrained the allowable perturbations at the boundaries: we have prescribed �⇢ = �~v = 0 at the

inlet and �p = 0 at the outlet. To derive suitable adjoint boundary conditions for this situation, we

introduce these primitive variable perturbations directly into Eqn. 4.61:

 T
⇣

~Ac � ¯̄I5~u⌦

⌘

· ~n1 M�V = 0, (3.90)

where M = @U

@V

is the transformation matrix from conservative to primitive variables (see the

appendix) and �V = {�⇢, �~v, �p}T is the vector of primitive variable perturbations. After taking the

transpose of Eqn. 3.90 and evaluating ( ~Ac � ¯̄I5~u⌦) · ~n1 M in three dimensions, we can write the

expanded result as
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= 0,

(3.91)

where v
n

= (~v � ~u⌦) · ~n1 as a shorthand, ~n1 = {n
x

, n
y

, n
z

}T, and ~v 2 = v1
2 + v2

2 + v3
2. In this

format, physical boundary conditions for  are easily recovered by imposing the constraints on the

flow perturbations resulting from the choice of direct boundary conditions and then manipulating

the remaining expressions.

For example, at the inlet, the imposition of mass flow forces �⇢ = �~v = 0, and therefore, the

terms associated with the products in the first four rows of Eqn. 3.91 are all zero. As �p is the only

allowable perturbation in the flow variables remaining, in order to completely remove contributions

from the boundary integral, the following expression must be satisfied:

�p

⇢

~' · ~n1 +
 
⇢E

� � 1
[�(~v · ~n1) � (~u⌦ · ~n1)]

�

= 0. (3.92)

The perturbation �p is arbitrary, so setting the bracketed expression in Eqn. 3.92 to zero gives

 
⇢E

= � � � 1

�(~v · ~n1) � (~u⌦ · ~n1)
~' · ~n1, (3.93)
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which represents the admissible physical boundary condition at the mass flow inlet.

Using the same derivation approach, we can determine physical boundary conditions for the

adjoint variables at the outlet boundary, where only �p = 0 and all other flow variable perturbations

are allowable. This eliminates any contributions from the final row of the expression in Eqn. 3.91,

and leaves a system of four equations with five unknowns from the first four rows of Eqn. 3.91.

Choosing  
⇢E

as the free variable and solving the other four equations in terms of it gives the

following four physical boundary conditions:
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�

, (3.97)

where e = E � ~v

2

2 is the internal energy per unit mass. These conditions are equivalent to those of

Hayashi et al. at an outlet if they are reduced to two dimensions in the absence of domain motion

(~u⌦ = 0).

The above steps can be repeated as a systematic procedure for finding boundary conditions when

other types of physical conditions are imposed in the direct problem (such as prescribing stagnation

conditions at an inlet). One must simply introduce the perturbations of the chosen quantities along

with the appropriate transformation matrix from the conservative variables into Eqn. 4.61 and solve

for the admissible conditions in the same manner. This procedure could be particularly useful

for internal flows that are sensitive to inlet/outlet boundary conditions (often solved on truncated

domains) or for flow control applications, such as jets, where sensitivities with respect to inlet/outlet

quantities might be desired.

Supersonic inlet and outlet boundaries are straightforward in comparison. At a supersonic inlet,

all of the flow variables can be prescribed as physical boundary conditions in the direct problem (all

characteristics are incoming), which means that none of the adjoint variables will have prescribed

values in the adjoint problem. This approach assumes that �U = 0 due to the direct problem

boundary condition, and therefore, Eqn. 4.61 is automatically satisfied. In the case of a supersonic

outlet, no flow variables can be specified in the direct problem (all characteristics are outgoing),

so all of the adjoint variables can be prescribed with  = 0 being the choice that exactly satisfies

Eqn. 4.61.
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3.5.3 Complete System of Adjoint Equations and Surface Sensitivities

The form of the adjoint system is dependent on the chosen functional, and for viscous flows, the

system also changes depending on the type of temperature boundary condition imposed on S. By

introducing into Eqn. 3.60 the resulting expressions from the previous sections concerning the eval-

uation of the boundary integrals (Eqns. 3.66, 3.68, and 3.88) while assuming the proper choice of

boundary conditions has removed variations of the flow variables in the far-field, we recover an

expanded version of �J :
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(3.98)

Eqn. 3.98 represents the most general form for the variation of the Lagrangian in the context of

unsteady, compressible, viscous fluid flow governed by the RANS equations in ALE form under the

frozen viscosity assumption.

At this point, a particular objective function must be chosen, so that the appropriate form

of �J can be introduced. There are only two possible options for eliminating all remaining flow

perturbations on the surface:

1. A suitable adjoint boundary condition on S is formed to eliminate perturbations.

2. The linearized boundary conditions are used to relate flow perturbations to shape perturbations

�S.

Therefore, given a particular problem (objective function and governing equation system with bound-

ary conditions), the adjoint system is defined in order to eliminate any perturbations that can not

be related to the shape perturbations. Satisfying this adjoint system with the admissible boundary

conditions will then eliminate the remaining flow perturbations. Due to the requirement that all flow

perturbations are eliminated, the choice of objective function can not be arbitrary in the continuous

adjoint framework. Previous work has addressed this issue [4].

The final expression for the functional variation is an integral over the time interval of interest

and S that contains terms involving only the flow and adjoint variables multiplied by �S. These

computable formulas are what we call the surface sensitivity, and they are the key result of the

continuous adjoint derivation. The surface sensitivity provides a measure of the variation of the

objective function with respect to infinitesimal variations of the surface shape in the direction of the

local surface normal. With each physical time step, this value is computed at every surface node of
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the numerical grid with negligible computational cost. In this manner, the functional variation for

an arbitrary number of shape perturbations is computable at the fixed cost of solving the flow and

adjoint PDE systems.

Within the next several sections, the complete adjoint PDE systems and surface sensitivity

formulas are presented for a variety of governing PDE systems and objective functions.

Force-based Functional in Viscous Flow with an Adiabatic Boundary Condition

In this scenario, �J is given by Eqn. 3.18, and the linearized no-slip (Eqn. 3.36) and heat flux

(Eqn. 3.48) boundary conditions are available for use. After introducing these terms into Eqn. 3.98

and rearranging for clarity, we find that the variation of the functional takes the following form:
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The form of the adjoint equations along with the admissible adjoint boundary conditions has become

clear, and many of the terms on the right-hand side of Eqn. 3.99 can be eliminated by satisfying the

adjoint system:
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(3.100)

Note that a sign change has occurred for the terms involving the time derivative and the convective

flux due to the integration by parts procedure. As a result, the sign of the characteristic velocities is

flipped in the adjoint problem, which causes characteristic information to propagate in the reverse

direction.
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The remaining terms can be gathered as
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One final simplification can be made in order to avoid the need to compute higher order derivatives

of the temperature. Starting from the term in the final integral of Eqn. 3.101,
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and the second term on the right hand side of Eqn. 3.102 can be integrated by parts as
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where we have formed the product rule, integrated in space and time in going from the first to

second lines, and changed the order of integration, used the identity
R

S

r
S

· (·) ds = 0 on a closed

surface [114], and rearranged in going to the third line. Using the result in Eqn. 3.103 in Eqn. 3.102

gives,
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and by expressing the energy equation on the surface (i.e., imposing the no-slip and adiabatic
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boundary conditions) and substituting the result into Eqn. 3.104, we find that
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Therefore, the final expression for the variation of the Lagrangian becomes
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where all of the terms composing @J
@S

form the surface sensitivity. Note that the final expression for

the variation involves only a surface integral in space and has no dependence on the volume mesh.

Furthermore, several new terms appear that directly involve time derivatives, source terms, or the

arbitrary motion of the surface. By studying the terms in the expression for surface sensitivity,

deeper physical insight and designer intuition can be gained. Visualizing the sensitivities as a map

on S can also help define design variables or geometry parameterizations by highlighting the regions

of the geometry that are most sensitive for a given objective function.

For a steady problem with a fixed surface (~v = 0 on S), a constant force projection vector ~d, and

no source terms, this expression reduces to that found previously using di↵erential geometry [14]:
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Furthermore, it is important to check the individual contributions from the terms in Eqn. 3.106 and

to simplfy the expression if possible. When certain terms are known to evaluate to zero analytically,

it is often the case that they are neglected in order to ensure accuracy in the calculated gradients, as

some terms can contaminate the sensitivity on the surface if the solution is not properly converged

or if the quality of the mesh is poor. The expression in Eqn. 3.106 is a very general result, and for the

results in this dissertation with a constant force projection vector, the terms involving derivatives

of ~d in the surface sensitivity do not appear.

Force-based Functional in Viscous Flow with an Isothermal Boundary Condition

In this scenario, �J is given by Eqn. 3.18, and the linearized no-slip (Eqn. 3.36) and isothermal

(Eqn. 3.51) boundary conditions are available for use. Introducing these terms into Eqn. 3.99 and
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rearranging for clarity yields
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(3.108)

The form of the adjoint equations along with the admissible adjoint boundary conditions is again

clear, and many of the terms on the right hand side of Eqn. 3.108 can be eliminated by satisfying

the following adjoint system:
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A small change in the boundary condition for the adjoint energy on the surface has occurred due to

the change from a heat flux to an isothermal boundary condition in the flow problem, as the adjoint

system is required to eliminate a di↵erent term than in the adiabatic case. The linearized boundary

condition for temperature is also slightly di↵erent, resulting in a change to the surface sensitivity

when the remaining terms are gathered:
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where all of the terms composing @J
@S

form the surface sensitivity.
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Force-based Functional in Inviscid Flow

In inviscid flow, the general form for the variation of the Lagrangian can first be greatly simplified

before introducing the variation of the functional and linearized boundary conditions:
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Now, for a force-based functional in inviscid flow, �J is given by Eqn. 3.22, and the linearized flow

tangency boundary condition from Eqn. 3.42 is available for use. Introducing these relationships

into Eqn 3.111 gives
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Many of the terms on the right hand side of Eqn. 3.112 can be eliminated, including the variation

of pressure �p, by satisfying the following adjoint system:
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The remaining terms that involve the perturbations in the surface �S can be gathered as
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A final simplification can be made by integrating the term involving r
S

(�S) in Eqn. 3.114 by parts
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where we have used the identity
R
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· (·) ds = 0 on a closed surface [114]. Substituting the

result into Eqn. 3.114, while recalling that the divergence in local coordinates can be expressed as
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where all of the terms composing @J
@S

form the surface sensitivity.

Heat Flux Functional

For designing the heat flux on the surface, �J is given by Eqn. 3.27, and the linearized no-slip

(Eqn. 3.36) and isothermal (Eqn. 3.51) boundary conditions are available for use. Introducing these
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terms into Eqn. 3.99 and rearranging for clarity gives
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We can eliminate many of the terms on the right-hand side of Eqn. 3.117 by satisfying the

corresponding adjoint system:
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The adjoint boundary conditions on the surface have again changed, as the adjoint system has

adapted in order to remove perturbations given the heat flux functional. In the case of heat flux

design, it is required that an isothermal boundary condition be applied in the direct problem.

Otherwise, a perturbation in temperature �T would remain, as the linearized isothermal boundary

condition would not be available to remove it. The final form of the variation can then be written

as

�J =
1

T

Z

t

f

t

o

Z

S

{#@
n

(~v � ~u⌦) · ~n �  
⇢E

@
n

(~v � ~u⌦) · ¯̄� · ~n + ~n ·
⇣

¯̄⌃' + ¯̄⌃ ⇢E

⌘

· @
n

(~v � ~u⌦)

+ µ2
tot

c
p

@
n

( 
⇢E

)@
n

(T ) + r · (c rT )}�S ds dt

=
1

T

Z

t

f

t

o

Z

S

⇢

@J
@S

�

�S ds dt, (3.119)

where all of the terms composing @J
@S

form the surface sensitivity.



56 CHAPTER 3. THE UNSTEADY CONTINUOUS ADJOINT APPROACH



Chapter 4

Numerical Implementation

The following sections contain numerical implementation strategies for each of the major components

needed for performing optimal shape design in unsteady flows. The complete design loop requires

PDE analysis with dynamic meshes for computing both the objective function and sensitivities, the

definition of suitable design variables for parameterizing the geometry, a mesh deformation algorithm

for perturbing the numerical grid after shape changes, and a gradient-based optimizer to drive the

design variables toward an optimum for the chosen cost function and constraints.

All of the above mentioned components were implemented within the open-source SU2 software

suite [98, 100]. This collection of C++ codes is built specifically for PDE analysis and PDE-

constrained optimization on unstructured meshes, and it is particularly well-suited for aerodynamic

shape design. Modules for performing flow and adjoint solutions, acquiring gradient information by

projecting surface sensitivities into the design space, and mesh deformation techniques are included

in the suite, amongst others.

An overview of practical implementation details for the numerical methods is given in this chap-

ter. Both the flow and adjoint problems are solved numerically on unstructured meshes with an

edge-based data structure. The unstructured grid technology plays an important role in the design

of complex, realistic geometries, as the nodes and elements in the corresponding volume mesh sur-

rounding the geometry are not constrained to a particular topology. This added flexibility makes

it much easier to generate grids for complex geometry (and even makes automatic mesh refinement

and adaptation simpler), but it comes at the cost of some computational e�ciency, as the relation-

ship between adjacent cells is no longer implicit and the connectivity information must be stored in

additional data structures.

Following the method of lines, we discretize the governing equations in space and time separately.

This decoupling of space and time allows for the selection of di↵erent types of schemes for the spatial

and temporal integration. In general, spatial integration is performed using the finite volume method

(FVM), while integration in time is achieved through several available explicit and implicit methods.

For time-accurate calculations, a dual time-stepping approach is used.
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Figure 4.1: Flow chart for a typical shape optimization problem. J is the objective function, and ~x
is the vector of design variables. J⇤ and ~x⇤ represent an optimum.

4.1 Spatial Integration via the Finite Volume Method

Both the governing flow and adjoint PDEs are spatially discretized on unstructured meshes via the

FVM [7, 48, 127, 106, 56, 70, 130, 53, 54, 122] using a median-dual, vertex-based scheme with a

standard edge-based structure. Instances of the state vector (U or  ) are stored at the nodes of

the primal mesh, and the dual mesh is constructed by connecting the primal cell centroids, face

centroids, and edge midpoints surrounding a particular node, as shown in Fig. 4.2.

Consider the following general form for a PDE that contains the physics in which we are inter-

ested:

@U

@t
+ r · ~F c � r · ~F v � Q = 0, (4.1)

where U is the vector of state variables, ~F c represents convective fluxes, ~F v represents viscous

fluxes, and Q is an arbitrary source term. Applying the FVM, we integrate the di↵erential form of

the equations over a control volume ⌦
i

surrounding node i, or

Z

⌦
i

(t)

✓

@U

@t
+ r · ~F c � r · ~F v � Q

◆

d⌦ = 0, (4.2)
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which, after application of the Divergence theorem, becomes

Z

⌦
i

(t)

@U

@t
d⌦+

Z

@⌦
i

(t)

⇣

~F c � ~F v

⌘

· ~n ds �
Z

⌦
i

Q d⌦ = 0, (4.3)

where the convective and viscous flux terms have been transformed from domain integrals to integrals

over the boundaries of the domain. Note that the geometry of the control volumes may change with

time, as denoted by ⌦
i

(t), and this will be required for dynamically deforming meshes. After

discretizing the convective and viscous fluxes with suitable methods (to be discussed below), moving

the time derivative out of the first integral, and assuming a piecewise constant source term results

in a semi-discretized form of the PDE, one has

d

dt

Z

⌦
i

(t)
U d⌦+

X

j2N (i)

(F̃ c

ij

� F̃ v

ij

)�S
ij

� |⌦
i

|Q
i

= 0, (4.4)

where F̃ c

ij

and F̃ v

ij

are the projected numerical approximations of the convective and viscous fluxes

along an edge ij (evaluated at the midpoint), respectively, �S
ij

is the area of the face associated with

the edge ij, |⌦
i

| is the volume of the current cell in the dual mesh, and N (i) is the set of neighboring

nodes to node i. Fig. 4.2 contains graphical descriptions of the geometric terms. Each of the terms

resulting from the spatial discretization are often summed together into a single numerical residual

R
i

(U) at each node and written concisely as

d

dt

Z

⌦
i

(t)
U d⌦+ R

i

(U) = 0. (4.5)

Eqn. 4.5 represents a system of coupled, ordinary di↵erential equations for each node that can be

marched forward in time with an appropriate time integration method.

The FVM with a median-dual, cell-vertex scheme, as described above, is amenable to an edge-

based data structure, meaning that mesh data (nodal coordinates, face areas, local normals, etc.) are

stored on an edge-by-edge basis. The edge-based structure o↵ers e�ciency in terms of memory usage

and also computation, as a single loop over the edges in the mesh allows for the numerical fluxes

for each node to be computed. In practice, the numerical residual is evaluated using a sequence of

loops over the edges and nodes:

• a loop over all of the edges in the primal mesh in order to calculate the convective and viscous

fluxes,

• a loop over all of the nodes in the primal mesh and compute source terms in each dual control

volume given the current state, and

• a loop over all of the boundary nodes in the primal mesh in order to impose boundary condi-

tions.

Additional edge loops may also appear for computing other necessary quantities. This series of steps

results in a value of R
i

(U) at each node at a single instance in time, which can then be substituted
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and j) in the domain interior.
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(b) Dual mesh control volume surrounding a boundary
node i.

Figure 4.2: Schematics showing the geometry of the primal and dual meshes.

into Eqn. 4.5 and integrated forward in time to either arrive at a steady state or a time-accurate

solution for the state vector U . In the following sections, the key algorithms for computing R
i

(U)

are detailed for both the flow and adjoint equations, including convective and viscous flux schemes,

source term integration, and boundary conditions.

4.1.1 Discretizing the Governing Flow Equations

The spatial discretization of the compressible Navier-Stokes equations will be discussed first, and

it can often be best understood by considering the mathematical character of the governing PDEs.

The characteristic behavior describes how solution information travels within the domain and will

dictate stability limits and the allowable conditions that can be prescribed at the domain boundaries.

Understanding characteristic behavior can aid in developing stable numerical methods for the spatial

integration of fluxes (upwind schemes, in particular) and also accurate strategies for the numerical

implementation of boundary conditions.

Studying the hyperbolic nature of the Euler equations enables the analysis of the characteristic

behavior. As most practical flows of interest in aeronautics are at a relatively high Reynolds num-

ber and thus convection dominated, methods that observe the characteristic behavior of the Euler

equations often form the basis for many numerical methods in viscous flow with the addition of

centrally-di↵erenced viscous fluxes.

By analyzing the quasi-linear form of the equations, one can diagonalize the convective flux Jaco-

bian in order to find the eigenvalues that represent the characteristic speeds. In a multi-dimensional

flow, these characteristic speeds are typically projected into the normal direction at control vol-

ume faces and domain boundaries, so that the flow can be treated as locally one-dimensional. In
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three dimensions on a stationary mesh, the diagonal matrix containing the characteristic speeds at

a boundary is given by,

⇤ =

0

B

B

B

B

B

B

@

�1 · · · ·
· �2 · · ·
· · �3 · ·
· · · �4 ·
· · · · �5

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

~v · ~n · · · ·
· ~v · ~n · · ·
· · ~v · ~n · ·
· · · ~v · ~n + c ·
· · · · ~v · ~n � c

1

C

C

C

C

C

C

A

, (4.6)

where ~v is the flow velocity, ~n is the local normal vector, and c is the speed of sound. The first

three eigenvalues are repeated and the final two entries are related to the acoustic waves. When the

equations are treated in ALE form, there is a direct consequence for the characteristic speeds of the

system. This can be shown by considering the eigenvalues of the flux Jacobian ~Ac

ale

, which are the

solution of the following eigenvalue problem:

0 = det
�

�

�

~Ac

ale

· ~n � � ¯̄I5

�

�

�

= det

�

�

�

�

�

@ ~F c

ale

@U
· ~n � � ¯̄I5

�

�

�

�

�

= det

�

�

�

�

@

@U
(~F c � ~u⌦U) · ~n � � ¯̄I5

�

�

�

�

= det
�

�

�

~Ac · ~n � (~u⌦ · ~n + �) ¯̄I5

�

�

�

, (4.7)

where ~u⌦ is the velocity of the moving domain. Solving Eqn 4.7, one has for the eigenvalues

�1 = �2 = �3 = (~v � ~u⌦) · ~n, (4.8)

�4 = (~v � ~u⌦) · ~n + c, (4.9)

�5 = (~v � ~u⌦) · ~n � c. (4.10)

This adjustment to the characteristic speeds involving ~u⌦ will repeatedly appear when composing

numerical schemes for solving the governing equations in ALE form: almost all of the numerical

methods for computing the convective fluxes, boundary conditions, and allowable time step limits

require knowledge of the eigenvalues of the system.

Integration of Convective Fluxes

The convective fluxes can be discretized using one of many central or upwind schemes that have been

developed for median-dual schemes on unstructured meshes. This section will focus on two classic

numerical schemes that are commonly used for computing convective fluxes: the flux-di↵erence-

splitting scheme of Roe [107] and the central scheme with artificial dissipation by Jameson, Schmidt,

and Turkel (JST) [62]. In particular, the adjustments required for handling the ALE form of the

convective terms will be highlighted.
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The Roe scheme is an approximate Riemann solver that evaluates the convective fluxes from flow

quantities reconstructed separately on both sides of the face of the dual control volume from values

at the surrounding nodes:

F̃ c

ij

= F̃ c

ale

(U
i

, U
j

) =

 

~F c

i

+ ~F c

j

2

!

· ~n
ij

� 1

2
P |⇤|P�1(U

i

� U
j

) � (~u⌦
ij

· ~n
ij

)

✓

U
i

+ U
j

2

◆

, (4.11)

where ~n
ij

is the outward unit normal associated with the face between nodes i and j, ~u⌦
ij

=

(~u⌦
i

+ ~u⌦
j

)/2 is the grid velocity at the dual cell face as an average of the grid velocities at nodes

i and j, U
i

is the vector of the conserved variables at point i, and ~F c

i

is the convective flux at node

i. P is the matrix of eigenvectors of the convective flux Jacobian matrix ~Ac constructed using the

Roe-averaged variables and projected in the ~n
ij

direction, and |⇤| is a diagonal matrix with entries

corresponding to the absolute value of the eigenvalues of the flux Jacobian matrix. The final term in

Eqn. 4.11 is the adjustment required for the convective flux due to the motion of the domain when

expressing the equations in ALE form. It can be computed by first averaging the grid velocities ~u⌦
and solution vectors U at nodes i and j and then subtracting their product from the traditional Roe

flux. It is also important to note that the eigenvalues in |⇤| must take into account the grid velocity

when computing the dissipation term, as seen in Eqns. 4.8-4.10.

As written, Eqn. 4.11 is first-order accurate in space. However, second-order accuracy can be

achieved via reconstruction of variables on the cell interfaces by using a Monotone Upstream-centered

Schemes for Conservation Laws (MUSCL) approach [125]. In the MUSCL approach, the conservative

variable state on both sides of the control volume face (typical identified as the left state U
L

and

right state U
R

) is reconstructed from the gradients of the variables at each node to project a higher-

order approximation of the state at the mid-point of an edge. For second-order accuracy, a linear

approximation is applied:

U
L

⇡ U
i

+ � (rU |
i

· ~r
ij

) , (4.12)

U
R

⇡ U
j

+ � (rU |
j

· ~r
ji

) , (4.13)

where ~r
ij

is the vector pointing from node i to the midpoint of edge ij, ~r
ji

is the vector pointing from

node j to the midpoint of edge ij, and we have also introduced a slope limiter that is represented

by �. Slope limiting is applied within upwind schemes in order to preserve monotonicity in the

solution by limiting the gradients during reconstruction. It has been shown that limiting is essential

for obtaining smooth solutions for flows with shocks, in particular. The slope limiters of Barth

and Jesperson [8] and Venkatakrishnan [126] are popular options on unstructured meshes. The

reconstructed left and right states in Eqns. 4.12 and 4.13 are then used in place of U
i

and U
j

in

Eqn. 4.11, respectively, in order to compute the second-order convective flux.

The JST scheme approximates the convective flux using a central di↵erence with a blend of two

types of artificial dissipation to maintain numerical stability by preventing even-odd decoupling of

the solution at adjacent nodes. The artificial dissipation terms are computed using the di↵erences

in the undivided Laplacians (higher-order dissipation) of connecting nodes and the di↵erence in the
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conserved variables (lower-order dissipation) on the connecting nodes. The two levels of dissipation

are blended based on a pressure switch for triggering lower-order dissipation in the vicinity of shock

waves. The result is a second-order scheme in space. The final expression for the numerical flux

using the JST method on unstructured meshes is [76, 82]:

F̃ c

ij

= F̃ c

ale

(U
i

, U
j

) = ~F c

✓

U
i

+ U
j

2

◆

· ~n
ij

� d
ij

� (~u⌦
ij

· ~n
ij

)

✓

U
i

+ U
j

2

◆

. (4.14)

Again, the final term in Eqn. 4.14 represents the adjustment to the flux due to grid motion based

on the average grid velocity at the cell face. The artificial dissipation d
ij

along the edge connecting

nodes i and j can be expressed as

d
ij

=
⇣

"
(2)
ij

(U
j

� U
i

) � "
(4)
ij

(r2U
j

� r2U
i

)
⌘

'
ij

�
ij

, (4.15)

where the undivided Laplacians r2U , local spectral radius, stretching in the grid and pressure

switches are computed as

r2U
i

=
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), (4.16)
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"
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= s4 max
⇣

0,(4) � "
(2)
ij

⌘

, (4.20)

where N (i) represents the set of neighboring points to node i, p
i

is the pressure at node i, s2 and

s4 are stretching parameters, ↵ is typically set to 0.3, and (2) and (4) are adjustable parameters

(typical values on unstructured meshes are (2) = 0.5 and (4) = 0.02).

In this work, the convective term for the scalar variable in the S-A turbulence model is discretized

using an upwind scheme. Typically, a first-order scheme is chosen, but the turbulence variable can

also take advantage of a MUSCL approach and limiters in order to obtain second-order accuracy.

The grid velocity term seen in Eqn. 4.11 must also be subtracted from the upwind flux for the

turbulence variable.

Integration of Viscous Fluxes

In order to evaluate the viscous fluxes using the finite volume method, flow quantities and their first

derivatives are required at the faces of the control volumes. Unlike the convective flux, the viscous

flux is di↵usive in nature with no preferential direction of information propagation, and therefore,

a central di↵erencing of the viscous flux is a stable and typical practice. The values of the flow
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variables (the primitive variables, the dynamic viscosity µ, the heat conduction coe�cient k, etc.)

and their gradients are averaged at the cell faces for computing the viscous flux in the Navier-Stokes

equations:

F̃ v

ij

= (µk

tot

~F vk) · ~n =

8

>

<

>

:

·
¯̄�

¯̄� · ~v + µ2
tot

c
p

rT

9

>

=

>

;

· ~n. (4.21)

Additionally, the following correction [129] is applied in order to reduce the truncation error of

the scheme:

r� · ~n =
�

j

� �
i

|x
j

� x
i

|↵f

+
1

2
(r�|

i

+ r�|
j

) · (~n � ↵
f

~s), (4.22)

where ~n is the face normal, ~s is the normalized vector connecting the cell centroid across the face,

|x
j

� x
i

| is the distance between node i and j and ↵
f

is chosen to be the dot product ↵
f

= ~s · ~n.

The gradients r�|
i

at node i are computed using either the Green-Gauss or least-squares approach,

which will be described below.

Source Term Integration

Source terms are approximated using piecewise constant reconstruction within each of the finite

volume cells, as seen in the last term in Eqn. 4.4. More specifically, the source term Q
i

is evaluated

using the local solution state at node i and then multiplied by the cell volume |⌦
i

| to form the

component of the numerical residual due to the source term.

The non-inertial form of the fluid equations contains a source term due to the Coriolis force. As

we will see, solving the governing equations in a time-accurate manner using the Dual time-stepping

approach also results in a source term involving the discretization of the time derivative term.

Boundary Conditions

In this section, we will describe the boundary conditions that are imposed and their practical im-

plementation for the current work. A variety of strategies exist for imposing boundary conditions

with median-dual, cell-vertex based schemes. It should be noted that, unlike cell-centered schemes,

the instances of the solution reside on the boundary surface, which requires special consideration.

Typical implementations fall into two categories: strong or weak boundary conditions. Strong

boundary conditions directly impose the values of the state variables at the boundary nodes as

a Dirichlet condition. In the weak form, rather than impose values of the variables directly, the

governing equations are expressed on the boundary (taking into account the imposed physical and

numerical boundary conditions) in order to form the corresponding flux representing that condition.

At convergence, the weak imposition will satisfy the specified boundary condition. In some instances,

a combination of weak and strong boundary conditions is employed.
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Flow Tangency Wall Boundary Condition The Euler equations represent fluid flow in the

absence of viscosity, and therefore, there is no mechanism for creating friction at a solid wall.

Consequently, the solid boundary simply prohibits any flow penetration, and the fluid velocity

remains tangent to the surface. In terms of the flow characteristics, there is only one positive

eigenvalue, meaning that only one physical boundary condition can be imposed. Therefore, for a

solid wall in motion, the flow tangency condition is enforced through the condition

(~v � ~u⌦) · ~n = 0. (4.23)

Given that the viscous fluxes have vanished (~F v = 0) for inviscid flow, only the convective fluxes at

the wall remain. To form a weak boundary condition, the projected convective flux in ALE form is

expressed at the wall with the imposition of the physical condition in Eqn. 4.23, which gives,

~F c
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9

>

=

>

;

. (4.24)

Note that the motion of the surface has resulted in a contribution to the flux at the wall for the

energy equation. For fixed walls (~u⌦ = 0), this term disappears, and only a contribution from the

pressure in the momentum equations remains. The flux in Eqn. 4.24 is computed with the local

pressure, grid velocity, and normal vector at each boundary node. The flux is then multiplied by

the face area on the boundary �S before being added to the residual for the current node.

No-Slip Wall Boundary Condition Unlike the Euler equations, the Navier-Stokes equations

contain viscous e↵ects, and at solid walls in viscous flow, it is assumed that there can be no relative

velocity between the fluid and the wall. While there is still only one incoming characteristic, the

addition of the di↵usive terms also changes the mathematical character of the governing equations,

and consequently, more conditions are needed on the boundary. More specifically, conditions on

the fluid velocity and temperature (or their derivatives) are required for the momentum and energy

equations.

The no-slip condition implies that, for moving walls, the fluid velocity at the surface must be

equal to the velocity of the surface, or

~v = ~u⌦. (4.25)

Expressing the projected convective and viscous fluxes at the wall while imposing the physical



66 CHAPTER 4. NUMERICAL IMPLEMENTATION

condition in Eqn. 4.25, one has
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Eqn. 4.25 can be imposed as a strong condition for the momentum equations by setting the value

of the momentum to the current density multiplied by the surface velocity at a given boundary node

while removing any contributions to its momentum residual that have been computed from fluxes or

source terms involving other nodes. For implicit calculations, this also requires setting the portion of

the Jacobian involving the momentum equal to the identity matrix, so that no spurious oscillations

in the momentum appear.

After the strong imposition of the condition for the momentum equations, Eqn. 4.26 becomes

(~F c

ale

� µk
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~F vk) · ~n =

8

>

<

>

:

·
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>
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;

. (4.27)

Again, note that the motion of the surface has resulted in additional contributions to the flux at

the wall for the energy equation. The flux terms involving the pressure and shear stress can be

computed from the current solution at the node and added to the residual for the energy equation

(along with multiplication by the face area). For fixed walls (~u⌦ = 0), the first two terms left over

for the energy equation disappear.

The remaining term in Eqn. 4.27 is evaluated based on the choice of temperature boundary

condition at the wall. For adiabatic walls,

@
n

T = 0, (4.28)

and there is no contribution from the heat transfer term in Eqn. 4.27. A constant heat flux can

also be imposed by setting @
n

T to a non-zero value, and in this case, the heat transfer term can be

directly calculated and added to the flux imposed for the energy equation.

Constant temperature, or isothermal, walls can also be specified by prescribing a value for the

temperature on the wall,

T = T
S

, (4.29)

and there are a number of methods for satisfying the boundary condition in this scenario, such

as approximating the value of @
n

T by di↵erencing the wall temperature and the temperature at a

suitable (nearest normal) interior neighbor. Other methods involve directly specifying the density
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or energy from a prescribed temperature at the wall to give a strong boundary condition [11].

Characteristic-based Flow Boundary Conditions We are interested in the concept of physi-

cal and numerical boundary conditions, as discussed by Hirsch [48]. In general for the flow problem,

characteristic-based boundary conditions are imposed at the outer boundaries where the fluid states

are updated depending on the sign of the characteristic speeds � given by the well-known diagonal-

ization of the convective flux Jacobian matrix ~Ac. These eigenvalues are given in Eqn. 4.8–4.10.

Incoming characteristics (� < 0) correspond to the propagation of information from the exterior

to the interior of the domain. At these locations, physical boundary conditions, such as a far-field

state, stagnation conditions, or back pressure, are prescribed.

Outgoing characteristics (� > 0) correspond to information propagation from the interior to

the exterior of the domain. Numerical boundary conditions are imposed at these locations that

extrapolate the characteristic variable information from within the domain in order to complete the

update to the state vector at the boundary, i.e., the total number of physical and numerical conditions

imposed must total the length of the state vector. The numerical boundary conditions provide the

missing information that is not provided by the physical conditions while retaining compatibility

with the discretized form of the governing equations. Once the boundary state is constructed in this

manner, a weak boundary condition can be imposed by computing the flux (convective and viscous)

between the boundary state U1 and the current state at a node i on the boundary U
i

.

For example, at a far-field boundary, a typical approach involves computing the signs of the

eigenvalues and then applying the appropriate combination of the far-field reference state (incoming

characteristics) and additional variables that must extrapolated from the interior of the domain

(outgoing characteristics) in order to build the complete boundary state U1. The acoustic Riemann

invariants, which correspond to the � = (~v � ~u⌦) · ~n ± c eigenvalues, can be used to extrapolate the

necessary data through the velocity or sound speed:

R+ = ~v · ~n +
2c

(� � 1)
, (4.30)

R� = ~v · ~n � 2c

(� � 1)
. (4.31)

Similar approaches using the Riemann invariants are available for subsonic inlets and outlets on

truncated domains where di↵erent physical conditions are imposed, such as stagnation conditions

or back pressure [11]. Supersonic boundaries are considerably more straightforward, as all charac-

teristics propagate in the same direction. The result is that either the entire boundary state can be

imposed as a physical condition (supersonic inlet) or the entire boundary state is extrapolated from

the interior of the domain as a numerical condition (supersonic outlet).

4.1.2 Discretizing the Continuous Adjoint Equations

Consider now the continuous adjoint equations in the most general form previously derived in Chap-

ter 3, which will require some special treatment given di↵erences in nature from the flow equations.
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The adjoint equations are typically transposed before discretization to give
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where  is the vector of adjoint variables, ~Ac represents convective flux Jacobian, ~u⌦ is the velocity

of the domain, µk

tot

is the viscosity, ~Avk represents the Jacobian of the viscous fluxes with respect

to the conservative variables, ¯̄Dvk represents the Jacobian of the viscous fluxes with respect to the

gradients of the conservative variables, and Q is a source term that appeared in the flow equations.

Following again the FVM, we integrate the di↵erential form of the equations over a control volume

surrounding node i (⌦
i

) to find
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!

d⌦ = 0, (4.33)

which can be rearranged into temporal, convective, viscous, and source components as
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d⌦ = 0.

The convective term (second term on the left-hand side of Eqn. 4.34) is not expressed in conser-

vative form, and therefore, the Divergence theorem can not be directly applied to transform it into

a surface integral over the control volume, as can be done for the viscous term (third term on the

left-hand side of Eqn. 4.34). While the Divergence theorem could still be applied if the appearance

of an additional term from an integration by parts is treated, a di↵erent approach will be pursued

here. The convective term can be integrated in a non-conservative fashion by moving the Jacobian

matrices outside of the integral and applying the Divergence theorem to the gradient of the adjoint

variables. This requires the non-constant coe�cients in front of the integral to be evaluated using

the data at the current node i and ultimately results in a non-conservative convective scheme where

F̃ c

ij

6= F̃ c

ji

when computing fluxes through the faces of the dual control volumes associated with each

edge in the mesh. Applying this strategy, we transform Eqn. 4.34 into
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!

d⌦ = 0.

Discretizing the convective and viscous fluxes with suitable methods (discussed below) and as-

suming a piecewise constant source term, we recover the semi-discretized integral form of the adjoint
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equations, or
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where F̃ c

ij

and F̃ v

ij

are the projected numerical approximations of the convective and viscous fluxes

along an edge ij (evaluated at the midpoint), respectively, �S
ij

is the area of the face associated

with the edge ij, |⌦
i

| is the volume of the control volume in the dual mesh, and N (i) are the

neighboring nodes to node i. Fig. 4.2 contains graphical descriptions of the geometric terms. Each

of the terms resulting from the spatial discretization can be summed together into a single numerical

residual R
i

( ) at each node:

�
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⌦
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@t
d⌦+ R

i

( ) = 0. (4.37)

Integration of Convective Fluxes

The convective term of the continuous adjoint equations can be discretized using a modified JST

scheme that features a single type of high-order artificial dissipation. The final expression for the

modified JST scheme is given as follows:
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. (4.38)

Again, the final term in Eqn. 4.38 represents the adjustment to the flux due to grid motion based

on the average grid velocity at the cell face. Due to the non-conservative nature (F̃ c

ij

6= F̃ c

ji

), the

non-constant coe�cients of ~Ac

T
for the convective flux are evaluated using the flow solution data U

i

at the current node i, or
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The artificial dissipation d
ij

along the edge connecting nodes i and j can be expressed as
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where N
i

represents the size of the set of neighboring points to node i, ~u
ij

= 1
2 (~u

i

+ ~u
j

) and

c
ij

= 1
2 (c

i

+ c
j

) are the fluid and sound speeds at the cell face, and (4) is an adjustable parameter

(typical values on unstructured meshes are (4) = 0.02 or lower in order to minimize artificial

dissipation). An artificial dissipation of upwind-type can be used as well [18].

Integration of Viscous Fluxes

As in the flow problem, the viscous fluxes for the adjoint equations are integrated using an average

of gradients method with a correction [129]. The viscous flux can be expressed as

F̃ v

ij

= µk

tot

¯̄Dvk

T · r · ~n, (4.47)

where the gradients of the adjoint variables are averaged on the faces of the control volumes. How-

ever, to be consistent with the convective flux discretization above, the flow solution variables are

evaluated at the current node i.

Switching to index notation (repeated indices imply summation), one has the following for the

projected viscous adjoint flux along an edge:
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where the following abbreviations have been used
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· ~n. (4.53)

Source Term Integration

Source terms in the adjoint equations are again approximated using piecewise constant reconstruction

within each of the finite volume cells. The remaining terms in Eqn. 4.36 are treated as source terms,

and this contribution to the residual at node i can be written as
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where all terms are evaluated using the available flow and adjoint variables (and their gradients) at

node i.

Boundary Conditions

In this section, we will describe the adjoint boundary conditions that are imposed and their practical

implementation for the current work. These boundary conditions were derived in Chapter 3 as part

of the unsteady adjoint derivation, and they are specific to a particular choice of cost function

and the type of boundary conditions imposed in the primal problem. Details for solid wall and

characteristic-based adjoint boundary conditions for force-based functionals are given below.

Flow Tangency Wall Boundary Condition for the Adjoint Euler Equations

For a force-based objective function in inviscid flow, the admissible boundary conditions for ~' can

be found in Eqn. 3.113, or

~' · ~n = (~d �  
⇢E

~v ) · ~n. (4.55)

Eqn. 4.55 can be used to build a weak boundary condition for all equations at the boundary node i.

First, Eqn. 4.55 is introduced through an update of ~' at the boundary node by adjusting ~' based on

the di↵erence between the left-hand side of Eqn. 4.55 (using the current solution) and the right-hand

side (the boundary condition we are imposing). This condition is applied with each iteration of the

solver in order to build an updated adjoint state  from the new ~' along with the current values

for  
⇢

and  
⇢E

.
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After building an updated state for  , the boundary condition is applied weakly by computing

the adjoint convective flux at the boundary node. Expressing the projected convective flux at the

solid wall, one has
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(4.56)

The flux contributions in Eqn. 4.58 are then included in the adjoint residual at each node on the

surface to complete the boundary update.

No-Slip Wall Boundary Condition for the Adjoint Navier-Stokes Equations

For a force-based objective function and a no-slip wall condition in the flow problem, the admissible

boundary conditions for the adjoint momentum equations can be found in Eqn. 3.100, or

~' = ~d �  
⇢E

~v

= ~d �  
⇢E

~u⌦, (4.57)

where we will assume that the flow boundary condition was satisfied, or ~v = ~u⌦. Eqn. 4.57 can be

imposed as a strong condition for the adjoint momentum equations by setting the value of ~' at a

given boundary node while removing any contributions to its momentum residual that have been

computed from fluxes or source terms involving other nodes. For implicit calculations, this also

requires setting the portion of the Jacobian involving the momentum equal to the identity matrix,

so that no spurious oscillations in the adjoint momentum appear.

However, conditions on the adjoint density and adjoint energy must still be defined. Expressing

the projected convective and viscous adjoint fluxes at the wall while imposing the condition in

Eqn. 4.57, one has
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(4.58)

where ¯̄⌃ = ⌃
ij

using the definitions in Eqn. 4.49–4.53. The flux contributions to the adjoint density

and adjoint energy in Eqn. 4.58 are added to the adjoint residual at each node on the surface in
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order to impose a weak boundary condition for those equations.

When adiabatic walls are imposed in the flow problem, the additional boundary condition on

the adjoint energy (from Eqn. 3.100) becomes

@
n

 
⇢E

= r 
⇢E

· ~n = 0. (4.59)

Applying Eqn. 4.59, we have the result that ⌃ ⇢E = 0, and the flux contributions to the adjoint

density and adjoint energy in Eqn. 4.58 simplify. If isothermal walls are specified in the flow problem,

the boundary condition on the adjoint energy is di↵erent (from Eqn. 3.109):

 
⇢E

= 0. (4.60)

and the terms involving ⌃ ⇢E in Eqn. 4.58 can be calculated and added as part of the weak boundary

condition imposed on the adjoint density and adjoint energy.

Characteristic-based Adjoint Boundary Conditions

At far-field, inlet, or outlet boundaries, characteristic-based boundary conditions can be applied

to the adjoint problem that are complementary to their characteristic-based counterparts for the

flow problem. The reader is referred to the discussion in Chapter 3 concerning the derivation of

the appropriate adjoint boundary conditions. A brief summary of the practical application is given

here.

We assume that the far-field is far enough removed that the viscous perturbation terms are

negligible on this boundary. This leaves only the convective boundary term at the far-field, and we

would like to remove any contributions from this integral. The integral over �1 involving B1 in

Eqn. 3.60 will indeed vanish if the scalar integrand is zero at every point on the boundary with each

physical time step, or

 T
⇣

~Ac � ¯̄I5~u⌦

⌘

· ~n �U = 0. (4.61)

Therefore, we seek the adjoint state  at the boundary that eliminates any contribution from this

integral to the variation of the functional by satisfying the preceding expression. A common strategy

for the removal of this integral is the imposition of a homogeneous adjoint boundary condition:

 = 0. However, in Chapter 3, we derived mathematically consistent types of characteristic-based

boundary conditions for subsonic inlets (mass flow) and outlets (back pressure). The strategy

detailed in that section can be repeated as a systematic procedure for finding boundary conditions

when other types of physical conditions are imposed in the direct problem (such as prescribing

stagnation conditions at a subsonic inlet).

Once the appropriate characteristic-based condition has been applied to compute an adjoint state

 1 at the boundary, a weak boundary condition can be imposed by computing the convective flux

between the boundary state (U1 and  1) and the current state at a node i on the boundary (U
i

and  
i

).
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4.1.3 Evaluating Gradients of the Flow and Adjoint Variables

Gradients of the flow and adjoint variables are needed in order to compute higher-order convective

flux reconstructions, such as with the second-order Roe scheme, viscous fluxes, and the expressions

for surface sensitivity that result from the adjoint derivations. Two well-established strategies for

computing these gradients on unstructured meshes with a median-dual cell-vertex scheme take ad-

vantage of the Green-Gauss and least-squares methods [6, 79]. The Green-Gauss method is briefly

outlined below for completeness.

Green-Gauss Method

A straightforward method for evaluating gradients can be formulated by taking advantage of the

Green-Gauss theorem in order to relate the gradient of a scalar � to an integral over the surface of

a control volume, or

Z
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Z

@⌦
i

�~nds. (4.62)

By assuming a constant value of the gradient over the dual control volume, a semi-discrete expression

for the gradient can be written as
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which can be evaluated at each node of the computational mesh by looping over all edges connected

to node i and averaging the values of � at the neighboring nodes j to construct a value for each face

of the control volume associated with edge ij, or
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)~n
ij

�S
ij
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Note that this includes a contribution from any boundary faces if node i lies on the boundary of the

domain.

4.2 Time Integration

This section discusses techniques for integrating both the flow equations and adjoint equations in

time. Several schemes will be described, including explicit and implicit schemes for both steady state

and time-accurate integration. For dynamic meshes, methods for moving the grid and computing

grid velocities for the ALE form of the governing equations are needed, and several options that

fall under the general category of rigid transformation or dynamic deformation for grids will be

discussed.
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4.2.1 Time-marching Schemes for the Governing Flow Equations

We now consider the techniques for time-marching the coupled system of ordinary di↵erential equa-

tions for the flow problem represented by Eqn. 4.5, which is repeated here:

d

dt

Z

⌦
i

(t)
U d⌦+ R

i

(U) = 0. (4.65)

By discretizing the time derivative term, one obtains a fully-discrete finite volume form of the

governing equations. The choice of time-marching method depends on whether a steady state or a

time-accurate solution is desired. In both cases, explicit and implicit methods are available. For

simplicity, Eqn. 4.65 can be rewritten as

d

dt
(|⌦

i

|U
i

) + R
i

(U) = 0, (4.66)

where |⌦
i

| =
R

⌦
i

(t) d⌦.

Integration to Steady State

For problems with a steady state solution, time-accuracy is not required during integration, as the

time derivative term will vanish as the solution approaches the steady state. Therefore, accuracy in

time is not the primary driver when choosing a time discretization for steady problems. In fact, a

simple time discretization, such as a first-order accurate scheme, is often selected.

The governing equations must be satisfied over the entire time interval during integration, so

Eqn. 4.66 can be discretized either explicitly or implicitly by evaluating the residual R
i

(U) at the

time tn or tn+1, respectively. Time level n corresponds to the known solution in its current state,

while time level n + 1 represents the new solution state that is being sought after advancing one

time step �t where �t = tn+1 � tn.

For example, the simplest explicit scheme is a forward Euler method where the residual is evalu-

ated using the solution in the current state Un and the time derivative is discretized with a first-order

forward di↵erence. Applying this to Eqn. 4.66, one has

|⌦
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|�U
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�t
i

= �R
i

(Un), (4.67)

where we have assumed that |⌦
i

| is constant for the steady problem and �U
i

= Un+1
i

� Un

i

. An

expression for the new solution state can be obtained by rearranging terms to give

Un+1
i

= Un

i

� �t
i

|⌦
i

|Ri

(Un). (4.68)

The solution is relaxed to a steady state by the repeated application of Eqn. 4.68 with a suitable

time step �t, which must be estimated in a manner that obeys the stability limits of the particular

time-marching scheme. For steady problems, a constant time step for all cells is not required, and
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a local time-stepping technique can be used to accelerate convergence to a steady state. Local

time-stepping allows each cell in the mesh to advance the solution at a local time step that can be

calculated from an estimation of the spectral radii at every node i according to

�t
i

= N
CFL

min

✓ |⌦
i
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i

,
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i

|
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, (4.69)

where N
CFL

is the Courant-Friedrichs-Lewy (CFL) number and �conv

i

is the integrated convective

spectral radius [32] computed as
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)/2, and c
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)/2 denote the velocity, grid velocity,

and the speed of sound at the cell face as an average of the neighhboring nodes, respectively. The

viscous spectral radius �visc

i

is computed as
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ij
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, (4.71)

where C is a constant, µ
ij

is the sum of the laminar and eddy viscosities in a turbulent calculation

and ⇢
ij

is the density evaluated at the midpoint of the edge ij.

While the forward Euler method is very straightforward and easy to implement, it su↵ers from

a small time step requirement in order to maintain numerical stability. Other explicit schemes

with larger stability bounds are available, such as Runge-Kutta methods, and these are a popular

compromise between convergence rates and computational e↵ort.

For particularly sti↵ problems (often caused by source terms, for instance), the small time step

requirement for explicit schemes may become prohibitive, and implicit methods can be used to

improve convergence due to their increased numerical stability. Perhaps the most common implicit

method for steady flows is the backward Euler scheme, where the residual is evaluated using the

solution state at the new time level, Un+1. Applying this to Eqn. 4.66, one has

|⌦
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|�U
i

�t
i

= �R
i

(Un+1), (4.72)

but the residuals at time level n + 1 are now a function of the unknown solution state Un+1 and

can not be directly computed. To remedy this, a first-order linearization about time level n can be

performed:
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Finally, the following linear system should be solved to find the solution update (�Un

i

):
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where if a flux F̃
ij

has a stencil of points {i, j}, then contributions are made to the Jacobian at four

points, or
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Note that, while implicit schemes o↵er more stability, the use of approximate Jacobians (first-order)

can impose limits on the allowable time step, especially at the beginning of the solution process

when we are not near the converged solution. However, implicit methods enable the use of higher

CFL conditions than with explicit methods, which translate to the specific values of �tn
i

that are

used to relax the problem.

The system given by Eqn. 4.74 is smoothed with each nonlinear iteration of the solver for some

number of linear iterations or until reaching a prescribed convergence tolerance. Common linear

solver choices for modern solvers include preconditioned Krylov methods. Preconditioning is the

application of a transformation to the original system that makes it more suitable for numerical

solution [102]. In particular, Jacobi, Lower-Upper Symmetric-Gauss-Seidel (LU-SGS), and line

implicit preconditioners have been implemented to improve the convergence rate of the available

linear solvers [116, 78]. Currently, the following two Krylov subspace methods are available in SU2:

• The Generalized Minimal Residual (GMRES) method [109].

• The Biconjugate Gradient Stabilized (BiCGSTAB) method [123].

Time-Accurate Integration

For unsteady flows, accuracy in time is desired, and therefore, the time discretization scheme must

be treated more carefully. A dual time-stepping strategy [52, 61] has been implemented to achieve

high-order accuracy in time. In this method, the unsteady problem is transformed into a series

of steady problems at each physical time step that can then be solved using all of the well-known

convergence acceleration techniques for steady problems.

To demonstrate the dual time-stepping strategy, we start again from Eqn. 4.66 and choose a

second-order backward di↵erence formula to discretize the time derivative of the coupled set of

ODEs while allowing for the control volumes to change with time, or

3

2�t
|⌦

i
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i

� 2
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i

|nUn
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+
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2�t
|⌦

i

|n�1Un�1
i

+ R
i

(Un+1) = 0, (4.76)
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where �t is a chosen physical time step and we have also assumed that the equations will be solved

in a fully implicit manner by expressing the spatial residual in terms of the solution at time level

n + 1. Eqn. 4.76 is then recast as a new form for the residual R⇤(U), and a fictitious, or pseudo,

time derivative is introduced in front of the original governing equations to give

@U

@⌧
+ R⇤

i

(U) = 0, (4.77)

where
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�t
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i

|nUn

i

+
1

2�t
|⌦

i

|n�1Un�1
i

◆

. (4.78)

Therefore, Eqn. 4.77 has assumed the same form that is used to converge the equations to a steady

state, and all of the corresponding techniques for relaxing the equations to a steady solution that

are detailed in the previous section apply in the new fictitious time, ⌧ . This can include implicit

methods, local time-stepping, or multigrid strategies, for example.

Converging the steady problem in pseudo time at each physical time step results in the modified

residual being equal to zero, or R⇤
i

(U) = 0, which is equivalent to finding the value of Un+1 that

satisfies Eqn. 4.76. This can also be seen by considering that the value of U in Eqn. 4.78 is the only

unknown, and once the problem has been relaxed in pseudo time, U = Un+1. Note also that many

of the terms in Eqn 4.78 are known quantities and can be included as a fixed source term during

integration. However, this requires that those values of the solution and cell volumes at previous

time levels are stored in memory. Therefore, after relaxing the steady problem at each physical

time step, these quantities are stored before moving to the next physical time. For completeness, a

first-order accurate in time form for Eqn. 4.78 can be written as

R⇤
i

(U) =
1

�t
U

i

+
1

|⌦
i

|n+1

✓

R
i

(U) � 1

�t
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i

|nUn

i

◆

. (4.79)

4.2.2 Time-marching Schemes for the Continuous Adjoint Equations

We now consider techniques for time-marching the coupled system of ordinary di↵erential equations

for the adjoint problem represented by Eqn. 4.36, which is repeated here:

�
Z

⌦
i

@ 

@t
d⌦+ R

i

( ) = 0. (4.80)

As R
i

( ) represents the spatial discretization of the adjoint problem, a fully-discrete finite volume

form of the governing equations is obtained by discretizing the time derivative term. For simplicity,

Eqn. 4.80 can be rewritten as

� d

dt
(|⌦

i

| 
i

) + R
i

( ) = 0, (4.81)

where |⌦
i

| =
R

⌦
i

(t) d⌦.

Many of the same techniques for time-marching that were applied to the flow equations can also



4.2. TIME INTEGRATION 79

be used for the continuous adjoint equations. The same type of forward Euler method as described

by Eqn. 4.68 for the flow equations could be directly applied to Eqn. 4.81 in order to relax the

adjoint problem to a steady state with an appropriate time step. Moreover, as the adjoint problem

features an equivalent set of characteristic speeds as compared to the flow problem (apart from a

reversal in sign), the time step criteria for the flow problem given by Eqn. 4.69 can also be directly

applied. Similarly, other techniques for solving the steady state problem (implicit methods, local

time-stepping, multigrid, etc.) can be immediately applied to the adjoint problem.

Due to the reversal of characteristic information in the adjoint problem, solving the adjoint

equations requires integration in reverse time. This is accomplished by writing the solution data to

disk at each time step during the direct problem and then retrieving the data in reverse order while

time-marching the adjoint equations. This includes the state of the grid at each step, including cell

volumes and grid velocities, in order to be consistent with what was computed for the direct problem.

Some techniques do exist that can ease the burden of data storage for the unsteady adjoint, such as

checkpointing [128, 121].

4.2.3 Convergence Acceleration

For typical iterative numerical solution methods, high-frequency (local) errors in the solution are

well-damped, while lower frequency (global) errors are poorly damped by the action of methods

that have a stencil with a local area of influence. Therefore, the low-frequency errors are di�cult to

eliminate, which leads to slower solver convergence, especially on fine meshes. A multigrid strategy

can recover e↵ective rates of convergence at all scales can be maintained in a solver by leveraging a

sequence of grids at various resolutions. With geometric multigrid, multiple levels of physical grids

with varying resolution are used to provide better approximations of the solution with each step of

an iterative solution method.

SU2 contains a Full-Approximation Storage (FAS) multigrid implementation that generates ef-

fective convergence at all length scales of a problem by employing a sequence of grids of varying

resolution. SU2 will automatically generate the coarse grids from the provided fine grid at runtime

using a built-in agglomeration procedure. In short, the goal is to accelerate the convergence of the

numerical solution of a set of equations by computing corrections to the fine-grid solutions on coarser

grids and applying this idea recursively [59, 78, 77, 12, 96].

4.2.4 Dynamic Meshes

Apart from solving the governing equations in ALE form, the handling of dynamic meshes forms the

other major component of calculating unsteady flows with moving surfaces or domains. With each

new physical time step, the nodal coordinates and velocities must be updated using suitable methods

for moving any boundaries and interior nodes of the volume mesh and computing the resulting grid

velocities. Typical strategies for dynamic meshes can be grouped into several categories:

• Rigidly transforming grids - the entire mesh is treated as a rigid body that can be translated

in space or rotated about a point
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• Dynamically deforming grids - the displacement of the mesh boundaries is provided and the

interior of the volume mesh is deformed to maintain a conforming grid

• Overlapping grid techniques - sliding mesh interfaces or overset grid methods can allow for

large relative motion between di↵erent surfaces or regions of the domain

• Remeshing - after imposing any surface motions, the computational grid is regenerated (either

partially or in full)

As an example, consider the external flow past a pitching airfoil with a typical far-field boundary.

Each of the above strategies could be applied, as only a single, rigid surface is in motion. If a solid

boundary deforms with time, as with aeroelastic calculations, then deforming grid approaches are

needed to adapt the mesh to the changing shape of the geometry. Grid deformation can also be

employed when limited relative motion occurs between multiple surfaces within a single domain, such

as small pitching or plunging motions of independent surfaces. However, should the relative motions

become too large, the grid deformation routines may fail to converge and/or produce poor-quality

or completely unusable grids with negative control volumes.

In the more complicated case where multiple surfaces exhibit large relative motion within a single

computational domain, such as with counter-rotating rotors, rotor-fuselage interactions for rotorcraft

or fixed-wing vehicles, or rotor-stator interactions within a turbomachine, then a system of sub-

grids, or zones, with independent motion will be needed. Furthermore, communication of solution

information between these zones must be achieved through a sliding mesh interface, an overset

mesh approach, a mixing plane approximation, or another method that appropriately considers the

relative grid motion [124].

A remeshing approach to regenerate the volume grid with each time step after surface motions

is the most general, but it is often prohibitively expensive to remesh large, complex geometries with

each physical time step, especially if the equations are solved on parallel computers through domain

decomposition (the mesh must not only be regenerated, but also re-partitioned and distributed

across the parallel machine).

The suitability of the present adjoint-based design methodology has been demonstrated on un-

structured meshes with sliding interfaces [29], and it is expected that the extensions to overset meshes

or mixing plane approximations will be theoretically straightforward (although significant numeri-

cal implementation challenges are also expected to arise, especially on parallel computers). In this

section, and in the next chapter containing numerical results, we will focus on rigidly transforming

and dynamically deforming grids composed of a single zone.

Rigidly Transforming Grids

If the type of surface motion can be supported by a rigid transformation of the grid (i.e., there is no

relative motion between individual grid nodes), then rigid body rotational and translational motion
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for a mesh node i with each physical time step can be generally described by

~x
i

n+1 = R(�~✓ )~r
i

+�~h, (4.82)

where ~x n+1 is the updated node location in Cartesian coordinates, �~h is a vector describing the

translation of the nodal coordinates between time steps, ~r
i

= ~x
i

n �~x
o

is the position vector pointing

from a prescribed motion center for the body, ~x
o

, to the point at time level n, and in three dimensions,

the rotation matrix, R(�~✓), is given by
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with �~✓ = {✓
x

, ✓
y

, ✓
z

}T being equal to the change in angular position of the nodal coordinates

about a specified rotation center between time t n+1 and t n. Note that this matrix is formed by

assuming positive, right-handed rotation first about the x-axis, then the y-axis, and finally the z-

axis. The general form of Eqn. 4.82 supports multiple types of motion, including constant rotational

or translational rates, pitching, or plunging. With each physical time step, the values of �~✓ and �~h

are computed, and Eqn. 4.82 is applied at each node of the mesh.

For the results presented below that involve pitching surfaces, the angle of attack as a function

of time is given by

↵(t) = ↵
o

+ ↵
m

sin(!t), (4.84)

where ↵
o

is the mean angle of attack, ↵
m

is the amplitude of the oscillations, and ! is the angular

frequency. The reduced frequency, or !
r

= !c

2v1
, where c is the chord or characteristic length and v1

is the free-stream velocity, is a non-dimensional parameter often specified for consistency between

flows. From Eqn. 4.84, �~✓ between successive time steps can be found.

For prescribed, rigid mesh motion, we can choose the analytic values for the grid velocity (based

on the time derivative of the pitching expression above, for instance). For the adjoint problem, the

mesh motion must be performed in reverse, and the mesh node locations and velocities that were

computed during the direct problem can be written to disk and retrieved with each time step. Note

again that the cell volumes will remain fixed for rigid mesh transformations.

Dynamically Deforming Grids

Mesh motion can also be accomplished by first moving the surface boundaries in some specified

manner and then deforming the volume mesh to conform to the new surface position with each

time step. There are a number of available volumetric grid deformation techniques, including classic

spring analogy methods or higher-fidelity methods based on the linear elasticity equations. These

techniques for mesh deformation are also used during optimal shape design in order to modify the
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volume mesh between major design iterations after an optimizer provides new values for the design

variables that control the geometry (surface shape), and they will be described below.

In the case of dynamically deforming grids, the dual control volumes are no longer fixed in size

over time and a readily-attainable analytic form for the grid velocities of the interior nodes in the

mesh will not be available. This is also the case for non-prescribed motion problems where the

integrated forces are used to solve the equations of motion for a body in free-flight or for computing

a structural response (aeroelastic response), for instance. For all types of mesh motion, the local

grid velocity at node i, ~u⌦
i

, can be computed by storing the node coordinates at prior time instances

and using a finite di↵erencing approximation that is consistent with the chosen dual time-stepping

scheme. For second-order accuracy in time, the mesh velocities are given by

~u⌦
i

n+1 =
d~x

i

n+1

dt
⇡ 3~x

i

n+1 � 4~x
i

n + ~x
i

n�1

2�t
, (4.85)

where �t is the physical time step and n + 1 is the current time level. A first-order accurate

approximation is similarly expressed as

~u⌦
i

n+1 ⇡ ~x n+1 � ~x n

�t
. (4.86)

Geometric Conservation Law

When computing unsteady flows on dynamic meshes with the ALE form of the equations (especially

with dynamically deforming meshes), a Geometric Conservation Law (GCL) should be satisfied.

First introduced by Thomas and Lombard [120], it has been shown mathematically and through

numerical experiment [9, 69, 34] that satisfying the GCL can improve the accuracy and stability of

the chosen scheme.

The basic idea is that the mesh motion and the grid velocity terms should not create spurious

oscillations in the solution as the ALE equations are integrated in time. In other words, a uniform

flow field should be preserved under the motion or deformation of the grid cells comprising the

domain. The GCL can be derived by introducing a spatially and temporally constant flow state into

the flow equations. For instance, assuming that U⇤ represents a constant flow state and starting from

the unsteady Euler equations for simplicity, the solution can be introduced during the derivation of
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the semi-discretized, finite volume form of the equations [67]:
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where in going from the fourth to the fifth line, we have imposed the uniform flow state, we have used

the identity
R

@⌦
i

(t) ~n ds = ~0, N (i) are the neighboring nodes to node i, and ~u⌦
ij

= (~u⌦
i

+ ~u⌦
j

)/2 is

the grid velocity at the dual cell face as an average of the grid velocities at nodes i and j. Eqn. 4.87

represents a GCL, and in words, it states that the change in the volume of a cell with time must be

balanced by the volume swept out by the moving faces of the cell.

To arrive at a fully discrete version of the GCL, it should be derived in the context of the same

time integration scheme that was chosen for the unsteady fluid equations. If the flow equations are

solved with a second-order backward di↵erence formula, the Eqn. 4.87 becomes
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A straightforward technique for the numerical implementation of this GCL [85, 10] involves multi-

plying Eqn 4.88 by the flow solution at time level n and rearranging terms as
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Eqn. 4.89 can then be substituted directly into Eqn. 4.76 and rearranged to give an augmented

version of the dual time-stepping scheme expressed as

R
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⌦ )Un +
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i

� Un) +
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2�t
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� Un) + R
i

(Un+1) = 0, (4.90)

where the fixed portion of the dual time-stepping source term now includes the GCL. The GCL
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residual, R
gcl

i

(~un+1
⌦ ), is evaluated as given in Eqn. 4.87 while using the grid velocities (either ana-

lytically defined or from a finite di↵erence approximation based on the change in the grid coordinates

in time), edge normals, and face areas at time level n + 1. For completeness, a first-order accurate

in time version of Eqn. 4.90 is similarly given by

R
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i
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⌦ )Un +

1

�t
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i

|n+1(Un+1
i

� Un) + R
i

(Un+1) = 0, (4.91)

4.3 Design Variable Definition

The continuous adjoint derivation above presents a method for computing the variation of an ob-

jective function with respect to infinitesimal surface shape deformations in the direction of the local

surface normal at points on the surface. However, this information can be used in any number of

manners that are consistent with the intent of the designer for changing the shape of the underlying

geometry. Adjoint sensitivities for a particular functional are typically projected into a design space

composed of suitable variables, as will be described below, and a survey of many available techniques

is given by Samareh [110]. In this framework, geometric sensitivities, i.e., the change in the surface

shape or coordinates with respect to a change in the design variable, are also required to compute

the sensitivity of the functional to the design variable using the chain rule.

For engineering applications, the geometry is often defined by Computer-aided design (CAD)

models that may have built-in parametric design variables of interest for the designer, such as

the twist or sweep of an aircraft wing. In these situations, a designer may wish to drive a shape

optimization problem using the geometric representation and parameterization within the CAD

model by importing the changes in the variables prescribed by an optimizer and exporting the new

surface shape within a design loop. Unfortunately, CAD-based optimization can often limit the

design space to a set of predefined variables that may not include the optimal shape, or it may

require rebuilding complicated CAD models if only legacy geometry or meshes are available.

Other strategies exist that are CAD-free and operate directly on the discrete surface geometry.

While it is possible to use each surface node in the computational mesh as a design variable capable of

deformation in conjunction with gradient smoothing [63], for instance, this approach is not pursued

here. Instead, we will compute the surface sensitivities @J
@S

at each mesh node i on the surface and

project this information into a design space made up of a smaller set of design variables (possibly

a complete basis). These variables might take the form of analytic functions, or bumps, that define

modifications in shape relative to the original geometry, or more advanced variables that rely on

computer graphics algorithms for deforming discrete geometry while retaining its topology. One

drawback of these approaches is that they require one to transfer the discrete geometry back into

a CAD representation if the goal is to manufacture the final design, but some recent tools are

alleviating these conversion issues.



4.3. DESIGN VARIABLE DEFINITION 85

4.3.1 Gradient Projection using Surface Sensitivities

To find the gradient of a chosen objective function J with respect to a set of design variables ↵
j

using the continuous adjoint presented in this work, consider first the final result from the continuous

adjoint derivation for the variation of the functional (we assume a steady problem here for simplicity):

�J =

Z

S
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@J
@S

�

�S ds. (4.92)

After introducing a perturbation for a particular design variable, we can approximate the gradient

of the objective function by evaluating the surface integral as
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where S is the surface being designed, N (S) represents the set of mesh nodes on the S,
�

@J
@S

 

i

is the value of the surface sensitivity from the continuous adjoint at node i, ~n
i

is the local unit

normal at node i, �↵
j

is a perturbation in the design variable (a bump function, for instance),

�~x
i

is the resulting change in the Cartesian coordinates of node i after applying the design variable

perturbation, and �S
i

is the area of the surface control volume surrounding node i. While
�

@J
@S

 

i

is given by the adjoint surface sensitivity, the remaining terms in Eqn. 4.93 are geometric in nature

and typically evaluated in a finite di↵erence manner by imposing a small deformation in each design

variable in order to find the local change in the nodal coordinates, �~x
i

. Two choices of design

variables were used in this work, and they are briefly described below.

4.3.2 Bump Function Design Variables

A number of di↵erent types of bump functions exist that enable the e�cient parameterization of

some geometries, such as airfoils. In the 2D airfoil shape optimizations that follow, Hicks-Henne

bump functions are employed [47], which can be added to the original airfoil geometry to modify

the shape. The Hicks-Henne function with maximum at point x
n

is given by

f
n

(x) = sin3(⇡xe

n), e
n

=
log(0.5)

log(x
n

)
, x 2 [0, 1], (4.94)

so that the total deformation of the airfoil surface from its original shape at an x location along the

chord can be computed as the sum of the smooth shape functions, or �y =
P

N

n=1 �nf
n

(x), with

N being the number of bump functions and �
n

the bump variable step size. These functions are

applied separately to the upper and lower surfaces. When �
n

= 0 for all bumps, the original airfoil

shape is recovered. Fig. 4.3 plots a set of equally-spaced Hicks-Henne shape functions f
n

. While

bumps functions, like those of Hicks-Henne, are e↵ective for some specific geometries, they can be

di�cult to apply in a straightforward manner to complex geometries where a more general, complete

parameterization may be required.
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Figure 4.3: Hicks-Henne shape functions for a set of equally spaced bumps.

4.3.3 Free-Form Deformation Variables

A Free-Form Deformation (FFD) strategy has also been adopted in both two and three dimen-

sions, which has become a popular geometry parameterization technique for aerodynamic shape

design [111, 65, 1]. In FFD, an initial box encapsulating the object (rotor blade, wing, fuselage,

etc.) to be redesigned is parameterized as a Bézier solid. A set of control points are defined on the

surface of the box, the number of which depends on the order of the chosen Bernstein polynomials.

The solid box is parameterized by the following expression:

X(u, v, w) =
l,m,n

X

i,j,k=0

P
i,j,k

Bl

j

(u)Bm

j

(v)Bn

k

(w), (4.95)

where u, v, w 2 [0, 1], and Bi is the Bernstein polynomial of order i. The Cartesian coordinates of

the points on the surface of the object are then transformed into parametric coordinates within the

Bézier box.

The control points of the box become design variables, as they control the shape of the solid,

and thus the shape of the surface grid inside. The box enclosing the geometry is then deformed

by modifying its control points, with all the points inside the box inheriting a smooth deformation.

Once the deformation has been applied, the new Cartesian coordinates of the object of interest can

be recovered by simply evaluating the mapping inherent in Eqn. 4.95. An example of FFD control

point deformation to a wing geometry appears in Fig. 4.4.

In 3D, each control point can move in the x, y, and z directions, and it is important to mention

that the movement of the FFD control points can be coordinated in order to create other “engineer-

ing” design variables, such as changes to thickness, twist, camber, or sweep, to name a few. Smaller

FFD boxes can also be nested within larger ones to help control the granularity of the applied shape
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(a) Original wing surface (grey) and FFD bounding box
with control points at the intersection of the black lines.

(b) Deformed wing surface after displacement of the FFD
control points near the wing tip.

Figure 4.4: An example of the FFD technique applied to the ONERA M6 wing.

changes.

4.4 Mesh Deformation

A variety of techniques exist for deforming volumetric grids given the displacements of the boundary

nodes of a particular domain, and these techniques are often used both to deform grids during the

simulation of unsteady flows on dynamic meshes and also between optimal shape design cycles after

perturbing the surface shape. Many of the available grid deformation strategies are motivated by

the treatment of the computational mesh as a solid body that can elastically deform as governed by

the equations of solid mechanics.

4.4.1 Spring Analogy

A particularly attractive option for meshes that do not contain high aspect ratio cells (for solving the

Euler equations, for instance) is based upon a classic spring analogy [9, 22, 13]. Once the boundary

displacements have been computed, the rest of vertices of the unstructured mesh can be deformed

by defining a sti↵ness matrix k
ij

that connects the two ends of a single bar (mesh edge). Equilibrium

of forces is then imposed at each mesh node

0

@

X

j2N
i

k
ij

~e
ij

~eT
ij

1

A ~u
i

=
X

j2N
i

k
ij

~e
ij

~eT
ij

~u
j

, (4.96)

where the displacement ~u
i

is unknown and is computed as a function of the known surface displace-

ments ~u
j

, N
i

is the set of neighboring points to node i, and ~e
ij

the unit vector in the direction

connecting both points. The system of linear equations can then be solved with a suitable iterative



88 CHAPTER 4. NUMERICAL IMPLEMENTATION

method, such as the conjugate gradient algorithm with Jacobi preconditioning, for example.

4.4.2 Linear Elasticity

For meshes with high aspect ratio cells that might be suitable for boundary layers in viscous flow, a

grid deformation technique based on the linear elasticity equations [64, 91, 25] may help preserve grid

quality near solid surfaces where methods based on the spring analogy often fail, resulting in negative

cell volumes. In three dimensions, linear elasticity governs small displacements, ~u = (u1, u2, u3)T, of

an elastic solid subject to body forces, ~f , and surface tractions,

(

M(~u) = r · ¯̄� � ~f = 0, in ⌦,

~u = ~g, on �,
(4.97)

where ¯̄� is the stress tensor. The stress, ¯̄�, and strain, ¯̄✏, tensors can be related using the following

constitutive equation

¯̄� = �Tr(¯̄✏) ¯̄I + 2µ¯̄✏, (4.98)

with the strain-displacement relation written as

¯̄✏ =
1

2
(r~u + r~uT), (4.99)

where Tr is the trace, � and µ are the Lamé constants given by

� =
⌫E

(1 + ⌫)(1 � 2⌫)
, µ =

E

2(1 + ⌫)
, (4.100)

and ⌫ is Poisson’s ratio, and E is the Young’s modulus. Poisson’s ratio, ⌫, describes how a material

compresses in the lateral direction as it extends in the axial direction. E is a measure of the sti↵ness

of a material. Each element of the mesh is treated as an elastic solid and, by allowing for variable

E throughout the mesh, can have its own rigidity. By choosing a value of E that is inversely

proportional to the volume of the element (or , small mesh cells near viscous walls will transform

more rigidly than larger cells, thus helping to preserve mesh quality in these regions where the flow

solution is particularly sensitive. Fig. 4.5 presents an example deformation for a mesh with high

aspect ratio cells.

The linear elasticity equations are discretized using the Finite Element Method (FEM) with a

standard Galerkin approximation, and the computed boundary displacements due to changes in the

design variables (or dynamic surface motions) are applied as a Dirichlet boundary condition. The

system of equations is solved iteratively by a preconditioned GMRES method. For large displace-

ments, it may be required to solve the system in increments, i.e., the linear elasticity equations are

solved multiple times as the domain boundaries are marched in increments from their original to

final locations.

A Finite Element Method (FEM) is also available to numerically evaluate the linear elasticity
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(a) Original domain showing two slices of a prism mesh
with high aspect ratio cells near the lower boundary.

(b) Deformed grid after applying an FFD control point
deformation to the lower boundary surface.

Figure 4.5: An example of volume mesh deformation using the linear elasticity equations.

equations. Finite element methods are based upon approximations to a variational formulation

of the problem. A variational formulation requires the introduction of a space of trial functions,

T = {V (t, ~x)}, and a space of weighting functions, W = {W (t, ~x)}. The problem consists of finding

V (t, ~x) in T satisfying the problem boundary conditions, such that

Z

⌦
WT

�r2V
�

d⌦ = 0. (4.101)

To produce an approximate solution to the variational problem, a grid of finite elements is

constructed on the domain, ⌦. It will be assumed that the discretization employs p nodes. Finite-

dimensional subspaces T (p) and W(p) of the trial and weighting function spaces, respectively, are

defined by

T (p) =

(

V (p)(~x) | V (p) =
p

X

J=1

V
J

N
J

(~x)

)

, W(p) =

(

W (p)(~x) | W (p) =
p

X

J=1

a
J

N
J

(~x)

)

, (4.102)

where V
J

is the value of V (p) at node J . On the other hand, a1, a2, . . . , ap

are constant and N
J

(~x)

is the piecewise linear trial function associated with node J . We now apply the finite element

approximation by discretizing the domain of the problem into elements and introducing functions

that interpolate the solution over nodes that compose the elements. The Galerkin approximation is

determined by applying the variational formulation of Eq. 4.101 in the following form: find V (p) in
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T (p), satisfying the problem boundary conditions, such that

Z

⌦
NT

I

�r2V
�

d⌦ = 0, (4.103)

for I = 1, 2, ..., p. The form assumed for V (p) in Eq. 4.102 can now be inserted into the left hand

side of Eq. 4.103 and the result can be written as
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= 0. (4.104)

Applying the divergence theorem, one has
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= 0, (4.105)

where ~⌫ is the outward unit normal associated with the control volume surface and the boundary

integral disappears unless we are computing a boundary element with non-homogeneous Neumann

conditions (I is an exterior node). The result at a typical interior node I is

X

E2I

X

J2E

V
J

✓

Z

⌦
E

rNT

I

· rN
J

d⌦

◆

= 0, (4.106)

where the first summation extends over the elements E in the numerical grid that contain node I

and the second summation extends over nodes J of the elements E. ⌦
E

is the portion of ⌦ which

is represented by element E.

4.5 Optimization Framework

Scripts written in the Python programming language are used to automate execution of the SU2

suite components, especially for performing shape optimization. The optimization results presented

in this work make use of the SciPy library (http://www.scipy.org), a well-established, open-

source software package for mathematics, science, and engineering. The SciPy library provides many

user-friendly and e�cient numerical routines for the solution of nonlinear constrained optimization

problems, such as conjugate gradient, Quasi-Newton, or sequential least-squares programming algo-

rithms. At each design iteration, the SciPy routines require as input only the values and gradients

of the objective functions, computed by means of our continuous adjoint approach, as well as the

set of any chosen constraints. The gradient for any flow variable constraints (e.g., lift, drag, etc.)

can be computed by solving an additional adjoint problem for each constraint.



Chapter 5

Optimal Shape Design

Applications

This chapter presents results for two- and three-dimensional optimal shape design demonstrations

for a range of problems governed by the non-inertial or unsteady flow equations [28, 29, 30, 31]. For a

number of the examples, studies of the gradient accuracy and verification against finite di↵erencing

gradients are provided. The final design case, a pitching wing in turbulent flow, is meant to be

representative of a viscous shape optimization problem of industrial interest through the inclusion

of the required mathematical, numerical, and geometrical complexity.

5.1 Rotating Airfoil in Inviscid Flow

As a verification test for the gradient information obtained by the continuous adjoint formulation,

a numerical experiment was devised for a NACA 0012 airfoil rotating in still air (M1 = 0), which

can be solved using the Euler equations expressed in a rotating frame. The flow is two-dimensional

in the x-y plane with rotation out of the page in the z-direction. The specific conditions for the

problem, and in particular the angular velocity of the airfoil rotation, were chosen such that the flow

was transonic and shocks appeared on the upper and lower airfoil surfaces. The goals of the test case

are two-fold: to verify the gradient of the coe�cient of drag C
d

with respect to a set of Hicks-Henne

design variables obtained from the continuous adjoint formulation against finite di↵erencing, and to

perform an airfoil shape optimization for minimizing C
d

. The details of the numerical experiment

and the unstructured mesh appear in Fig. 5.1. The mesh consisted of 10,216 triangular elements,

5,233 nodes, 200 edges along the airfoil, and 50 edges along the far-field boundary.

Fig. 5.1 shows the absolute Mach number contours around the airfoil. In the inertial frame, the

flow appears entirely subsonic as the air is pushed out of the path of the rotating airfoil. However,

there are clear shock structures on both the upper and lower surface, and when the velocity due to

rotation is taken into account to form the relative velocity, the local Mach number near the airfoil

91
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(a) Conditions for the rotating airfoil problem. (b) Zoom view of the unstructured mesh near the airfoil.

Mach_Number

0.400769
0.342308
0.283846
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0.166923
0.108462
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(c) Absolute Mach number contours.

PsiRho

0.000744737
0.000634211
0.000523684
0.000413158
0.000302632
0.000192105
8.15789E-05
-2.89474E-05
-0.000139474
-0.00025

(d) Adjoint density contours.

Figure 5.1: Details for the 2D rotating airfoil numerical experiment, the computational mesh, and
solutions for the baseline geometry.

surface is supersonic in some locations. Fig. 5.1 also presents contours for the adjoint density  
⇢

near the surface. Note the strong features near the nose and sonic points in the adjoint solution.

In order to verify the accuracy of the gradient information obtained by the continuous adjoint

formulation, Hicks-Henne bump functions were chosen as design variables along the upper and lower

surfaces of the NACA 0012. The numbering for the bumps starts from 0 at the trailing edge on the

lower surface and increases as one wraps around the leading edge and upper surface of the airfoil. A

comparison was then made between the gradient of C
d

with respect to the design variables resulting
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(a) Cd gradients from finite di↵erencing based upon var-
ious levels of convergence in the density residual (order
of magnitude reduction). Very low levels of convergence
a↵ect the gradient accuracy. The step size for each case
was 0.0001c.

(b) Cd gradients for the continuous adjoint based upon
various levels of convergence in the density and adjoint
density residuals (order of magnitude reduction). The
results here show that the adjoint gradients are fairly in-
sensitive to convergence level. The gradient projection
step size for each case was 0.0001c.

(c) Cd gradients from finite di↵erencing with various step
sizes. It is clear that the step size impacts the accuracy
of the gradient information, and that a su�ciently small
step must be taken. Little di↵erence is apparent between
0.0001c and 0.000001c. All cases were converged 8 orders
of magnitude in the density residual.

(d) Cd gradients for the continuous adjoint with di↵erent
gradient projection step sizes for the Hicks-Henne bump
deformations. As expected, there is no dependence on
the step size for the adjoint, as the surface sensitivities
are computed independently of the geometric sensitivities
(gradient projection). The solutions were converged 8
orders of magnitude in the density and adjoint density
residuals.

Figure 5.2: Comparison studies between the continuous adjoint and finite di↵erencing for the gradient
of C

d

. A set of 38 Hicks-Henne bump function variables (x
i

) are along the x-axis.

from the continuous adjoint approach and a finite di↵erencing approach using small step sizes for

the bump deformations. For this problem, the force coe�cients (C
l

, C
d

, and C
p

) were computed

using ⇢1, p1, and the velocity due to rotation at the nose of the airfoil. The gradients compare

very favorably, although there are slight di↵erences between the adjoint and finite di↵erencing, as
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seen in Fig. 5.3 for a set of 50 bump functions.

Further studies were performed to explore the sensitivity of the gradients to both the step size

of the bump deformations and the level of convergence attained by the solver for both the flow and

adjoint problems. These comparisons are given in Fig. 5.2 for a set of 38 bump functions. Similar to

gradient accuracy results shown by Kim et al. [66], the finite di↵erence gradients are quite sensitive

to the chosen step size and level of solver convergence, whereas the adjoint gradients are largely

insensitive to these parameters.

(a) Direct comparison of the gradients obtained by the
continuous adjoint and finite di↵erencing. Direct and
adjoint solutions were converged 8 orders of magnitude
in the density residual and adjoint density residual, re-
spectively. The step size for the bump deformations was
10�6c.

(b) Cp and profile shape comparison for the baseline ro-
tating NACA 0012 and the minimum drag airfoil. The
optimizer has e↵ectively removed the shocks by making
the airfoil thinner in the forward half and thicker in the
aft half.

Figure 5.3: Gradient verification and a comparison of the baseline and minimum drag airfoil designs.

Finally, a redesign of the rotating airfoil was performed using the gradient information obtained

from the adjoint formulation. The specific shape optimization problem was for drag minimization

with a geometric constraint that the maximum thickness of the airfoil remain larger that 0.12c. A

set of 50 Hicks-Henne bumps were chosen as the design variables. Upon completion, the C
d

was

successfully reduced from 0.00725 down to 0.00009, which is a 98.7 % reduction, and the maximum

thickness of the final airfoil design met the constraint at a value of 0.122c. C
p

distributions as well as

the profile shapes of the initial and final designs are compared in Fig. 5.3. The optimization process

has eliminated the shocks on the upper and lower surfaces that originally appeared on the rotating

NACA 0012 by making the airfoil thinner in the forward half and thicker in the aft half while also

satisfying the thickness constraint.

5.2 Pitching Airfoil in Inviscid Flow

For validation of the unsteady Euler equations in ALE form, a comparison of numerical results was

made against the well-known CT6 data set of Davis [21]. The physical experiment measured the
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unsteady performance for the NACA 64A010 airfoil while pitching about the quarter-chord point.

The particular experimental case of interest studied pitching motion with a reduced frequency w
r

of

0.202, M1 = 0.796, a mean angle of attack of 0 degrees, and a maximum pitch angle of 1.01 degrees.

A baseline unstructured mesh consisting of 16,937 triangular elements, 8,606 nodes, 200 edges

along the airfoil, and 75 edges along the far-field boundary was constructed, as seen in Fig. 5.5. All

simulations of the pitching airfoil were time-accurate (dual time-stepping) with 25 time steps per

period for a total of 10 periods. The equations were relaxed in pseudo-time for each physical time

step until a reduction of 3 orders of magnitude in the density residual was achieved. This a↵orded

adequate time for transient e↵ects to wash away and for well-resolved time-averaged behavior in the

periodic steady state.

(a) Coe�cient of lift versus angle of attack (degrees) com-
pared against experimental data. Note that nonlinear ef-
fects cause lift hysteresis.

(b) Direct comparison of the time-averaged drag gradi-
ents with respect to 50 Hicks-Henne bumps as obtained
by the continuous adjoint and finite di↵erencing.

(c) Profile shape comparison for the initial NACA 64A010
and the minimum time-averaged drag airfoil.

(d) Optimization history of a time-averaged drag mini-
mization for a pitching airfoil with a time-averaged lift
constraint.

Figure 5.4: Verification, validation, and optimization results for a pitching NACA 64A010.



96 CHAPTER 5. OPTIMAL SHAPE DESIGN APPLICATIONS

Fig. 5.4 shows a comparison of the lift coe�cient versus angle of attack between simulation

and experiment during the final period of oscillation. In physical time, the curve is traversed in a

counterclockwise fashion. The flow around the airfoil features two strong shocks on the upper and

lower surfaces. Note that nonlinear behavior corresponding to moving shock waves during pitching

results in a hysteresis e↵ect. The numerical results agree well with experimentally measured values

and also compare favorably with other inviscid results.

In order to verify the accuracy of the gradient information obtained via the inviscid unsteady

adjoint, 50 Hicks-Henne bump functions were chosen as design variables. The bumps were equally

spaced along the upper and lower surfaces of the NACA 64A010 (25 bumps each on the upper and

lower surfaces). The numbering for the bumps starts from 0 at the trailing edge on the lower surface

and increases as one wraps around the leading edge and upper surface of the airfoil. After solving the

adjoint equations using the stored solution data from the numerical experiment performed above,

we can compare the time-averaged drag gradients with respect to the Hicks-Henne design variables

(@C̄

d

@x

i

) as calculated using both the continuous adjoint and a finite di↵erencing approach with small

step sizes for the bump deformations (10�6c). As seen in Fig. 5.4, the gradients exhibit excellent

agreement.

(a) Close-up view of the triangular mesh around the air-
foil geometry (Euler).

(b) Close-up view of the mixed-element mesh around the
airfoil geometry (RANS).

Figure 5.5: Numerical grids for the pitching NACA 64A010 calculations.

A redesign of the pitching NACA 64A010 airfoil in inviscid flow was performed using the gradient

information obtained from the unsteady adjoint formulation. The specific shape optimization prob-

lem was a constrained time-averaged drag minimization using the 50 Hicks-Henne variables from the

gradient verification. The time-averaged coe�cient of lift C̄
l

was constrained to be equal to zero,

and a separate, geometric constraint was applied to fix the internal area of the airfoil to its original

value. After 36 function evaluations, C̄
d

was successfully reduced by 57.0 % while satisfying both
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of the constraints. Profile shapes of the baseline and final designs are presented in Fig. 5.4, along

with the optimization history for the C̄
l

and C̄
d

values. The shocks have been removed from the

design by a thinning of the profile shape near the mid-chord, while maintaining a constant airfoil

area by increasing the thickness near the trailing edge. The final design also remains symmetric,

which results from the constraint on C̄
l

and the imposed mean pitching angle of zero.

5.3 Pitching Airfoil in Turbulent Flow

In order to validate the implementation of the unsteady RANS equations in ALE form and to verify

the unsteady viscous adjoint, the NACA 64A010 test case was again studied in turbulent flow.

All of the details for the flow simulation remain the same as for the inviscid case above, with the

addition of specifying a Reynolds number of 12.5 million. A mixed-element, unstructured mesh was

constructed (see Fig. 5.5) that consisted of 22,904 triangular elements, 12,500 quadrilaterals near

the airfoil surface to capture the boundary layer, 24,111 nodes in total, 250 edges along the airfoil,

and 68 edges along the far-field boundary. The spacing at the wall was chosen to achieve a y+ value

less than 1.

The unsteady RANS equations with the Spalart-Allmaras turbulence model were solved for the

flow around the pitching airfoil, and a comparison was again made against the CT6 data set of

Davis [21]. The viscous results show slightly better agreement in the lift over the inviscid results, as

seen in Fig. 5.6. The flow field again features strong shocks on the upper and lower surfaces.

(a) Coe�cient of lift versus angle of attack (degrees) com-
pared against experimental data. Note that nonlinear ef-
fects cause lift hysteresis.

(b) Comparison of the time-averaged drag gradients with
respect to 50 Hicks-Henne bumps as obtained by the con-
tinuous adjoint and finite di↵erencing.

Figure 5.6: Numerical results for a pitching NACA 64A010 in turbulent flow.

50 Hicks-Henne bump variables were chosen as design variables and used to compute gradients,

and the bumps were equally spaced along the upper and lower surfaces of the NACA 64A010. The

numbering for the bumps starts from 0 at the trailing edge on the lower surface and increases as one
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wraps around the leading edge and upper surface of the airfoil. In order to verify the accuracy of

the gradient information obtained via the time-accurate adjoint, a comparison was made between

the time-averaged drag gradients with respect to the design variables as calculated using both the

continuous adjoint (after solving the adjoint equations in reverse time using the stored solution

data from the numerical experiment performed above) and a finite di↵erencing approach with small

step sizes for the bump deformations (10�6c). The resulting gradients are compared in Fig. 5.6

and exhibit very good agreement apart from some discrepancies near the trailing edge where the

turbulence model is more active, which might be expected due to the frozen viscosity assumption in

the adjoint formulation.

(a) Comparison of lift coe�cient versus angle of at-
tack in degrees between simulation and experiment using
URANS.

(b) CD history for the initial and final pitching airfoil
designs. The average values are also shown as horizontal
lines. The average drag is greatly reduced for the final
design.

(c) Comparison of the initial and final airfoil profiles. (d) Average drag and area for each CFD evaluation dur-
ing the optimization process.

Figure 5.7: Force coe�cient histories, shape comparison, and optimization history for the pitching
airfoil design.
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A redesign of the pitching NACA 64A010 airfoil was performed using the gradient information

obtained from the time-accurate viscous adjoint formulation. The specific shape optimization prob-

lem was for time-averaged drag minimization using the same 50 bump design variables from the

gradient verification with a constraint that the internal area of the airfoil remain constant. After 12

CFD evaluations, the time-averaged drag, C̄
d

, was successfully reduced by 10.6 %. A time history

of the lift and drag is shown in Fig. 5.7, along with the optimization history. Profile shapes of the

initial and final designs are also compared in Fig. 5.7. The shocks have been removed from the

design by a thinning of the profile shape near the mid-chord, while maintaining a constant airfoil

area. It should be noted that the shape changes in the final profile for the RANS-based design are

more subtle than those for the same case with the Euler equations, especially near the trailing edge

where large deflection could result in separation.

5.4 Rotor in Hover

For the first design case in 3D, a simple rotor geometry was chosen so that comparisons of simulation

against the experimental data of Caradonna and Tung [16] could be made. The rotor geometry

consists of two untwisted, untapered blades with an aspect ratio of 6 and a constant NACA 0012

airfoil section along the entire span. A lifting case was chosen with a collective pitch angle of 8

degrees and a pre-cone angle of 0.5 degrees. The flow conditions are that of hover at 2500 RPM

which results in a tip Mach number of 0.877. The Euler equations expressed in a rotating frame

(and their corresponding adjoint) were used to simulate this case.

(a) Mesh topology showing the rotor blade surface, outer
boundaries, and periodic faces making up the half-
cylinder.

(b) Rotor geometry with an FFD box surrounding the
blade tip.

Figure 5.8: Mesh and FFD box details for the Caradonna and Tung numerical experiment.

The computational mesh, the topology of which can be seen in Fig. 5.8, takes advantage of
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Figure 5.9: C
p

contours on the upper surface of the baseline rotor geometry along with a comparison
to experiment at multiple span locations. The blade tip is on the right, which is rotating toward the
bottom of the page. The surface sensitivity contours for a torque objective function are also shown.
Note the high sensitivity to shape deformations in the vicinity of the shock.

rotational periodicity by simulating flow over a single blade in a half-cylinder. The mixed-element

mesh uses 3.36 million tetrahedra and 19,422 pyramids with a total of 588,572 nodes. The outer

faces of the domain are near enough to the rotor that care must be taken to allow for subsonic

induced velocities, including the rotor wake, to pass through them. Therefore, characteristic-based

inlet and outlet conditions are applied on these boundaries. Flow tangency is satisfied at the blade

surface and the small central hub. The small hub does not exist in the physical model, but adding

it eases the construction of the periodic boundaries in the computational grid with little change in

the solution.

Fig. 5.9 contains the C
p

contours on the upper blade surface along with C
p

distributions at

several radial stations compared to experiment. Note the shock near the blade tip where the flow is

transonic, and as seen in the C
p

comparisons with experiment, the shock is crisply captured. There is

a discrepancy in the location of the shock compared to experiment due to the inviscid approximation,

although the present results agree with other available inviscid simulations. Also shown in Fig. 5.9

are surface sensitivity contours from the rotating adjoint solution based on a coe�cient of torque
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C
Q

objective function. It should be noted that the most sensitive locations on the blade surface are

in the vicinity of the shock and the expansion region upstream of the shock. Visualizing the surface

sensitivities in this manner can o↵er designer intuition and can also aid the designer in defining

appropriate design variables for automatic shape design.

In order to verify the gradient information and optimize the rotor geometry, design variables were

defined using a FFD parameterization. First, a box was generated around the tip region of the blade

where shape changes are to be made, as seen in Fig. 5.8. The design variables are the displacement

of the individual control points that define this FFD box. Note that the surface sensitivities have

guided the design variable definition by locating the FFD box around the more sensitive tip region.

Displacements in the vertical direction were allowed for 84 total control points on the upper and

lower surfaces of the FFD box. Control points near the trailing edge and inboard side of the FFD box

were held fixed to maintain a smooth surface during deformation. Before attempting shape design,

we compared the gradients of C
Q

with respect to a subset of the FFD control point variables on the

upper surface given by both the continuous adjoint and finite di↵erencing. The gradient verification

appears in Fig. 5.10. While the adjoint and finite di↵erencing gradients are not identical, they

exhibit excellent agreement for a complex 3D cases on unstructured meshes.

(a) Continuous adjoint and finite di↵erence gradient com-
parison for 19 FFD control point variables.

(b) Optimization history for a thrust-constrained (dotted
line) inviscid torque minimization of the rotor geometry.

Figure 5.10: Gradient verification using the FFD control point variables and optimization results.

Lastly, a redesign of the rotor blade shape for minimizing torque with a minimum thrust con-

straint of C
T

= 0.0055 was performed using gradient information obtained via the continuous adjoint

approach. After 20 design cycles, C
Q

was reduced by 26.9 % from 0.0006098 to 0.0004458, and a C
T

value of 0.00553 was maintained (down from a starting value of 0.00575). The optimization histories

for C
T

and C
Q

are presented in Fig. 5.10. The baseline and final surface shapes near the blade tip

along with C
p

contours are compared in Fig. 5.11. The strong shock on the upper surface has been

removed due to a pronounced change in the shape near the tip. The optimized design features a

blade tip with thinner, asymmetric sections. Camber has been introduced near the leading edge to



102 CHAPTER 5. OPTIMAL SHAPE DESIGN APPLICATIONS

Figure 5.11: Comparison of the baseline and optimized rotor geometries along with C
p

contours.
The strong shock has been removed due to a distinct change in the tip shape.

help avoid the development of a shock while maintaining thrust.

5.5 Wind Turbine Design

To demonstrate the e↵ectiveness of the non-inertial viscous adjoint methodology for large-scale,

complex geometries, the NREL Phase VI wind turbine was chosen. The turbine geometry consists

of two blades with a radius of 5.029 m and a constant S809 airfoil section along the entire span.

This geometry has been used widely for CFD validation studies along with the data from the NREL

Phase VI Unsteady Aerodynamics Experiment [113, 105]. The selected case for the present study

is Sequence S with a 7 m/s wind speed and an RPM of 72. The computational mesh consists of

3.2 million nodes and 7.9 million elements, with triangles on the surface of the blade and prismatic

elements in the boundary layer before transitioning to tetrahedra in the far-field.

The flow field around the turbine blades was calculated with the non-inertial RANS equations

with the S-A turbulence model. For validation purposes, Fig. 5.12 gives C
p

distributions at two radial

stations as computed and compared to experiment, and Fig. 5.13 contains the C
p

contours on the

blade surface. Good agreement is seen overall, apart from near the trailing edge of the blade where

some discrepancies are found (spikes in C
p

are also seen at the sharp trailing edge, which are common

with this type of unstructured mesh). More investigation into low-Mach number preconditioning

and additional modifications to the S-A model could also be pursued to further improve the results.

The surface sensitivity was computed for a torque objective function, and sensitivity contours can

be seen on the blade in Fig. 5.13. It should be noted that the most sensitive locations on the blade

surface are outboard locations along the span highlighted by the surface sensitivity contours.
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(a) r/R = 0.63 (b) r/R = 0.95

Figure 5.12: C
p

distributions at multiple radial blade stations compared with experimental data.

While a more realistic objective function for wind turbine design might involve total power (and

possibly multi-point design), we demonstrate the viscous adjoint here with a simple redesign of

the rotor blade shape for increasing torque using gradient information obtained via the continuous

adjoint approach. The blade geometry is parameterized by a free-form deformation approach. First,

boxes were generated around the two blades and located where shape changes are to be made.

The displacement of the individual control points that define the FFD boxes are then manipulated

as design variables. Displacements in the vertical direction were allowed for 84 control points on

the upper and lower surfaces of each FFD box. In order to maintain a smooth surface during

deformation, control points near the trailing edge and inboard side of the FFD box were held fixed.

After 3 design cycles (terminated after this point to save excessive cost with this large problem), the

torque coe�cient was increased by 4.0 % from 0.00147 to 0.00153. These optimization results are

presented in Fig. 5.13, including a comparison of the initial and final surface shapes.

5.6 Pitching Wing in Inviscid Flow

In order to test the unsteady adjoint capabilities on a realistic geometry in three dimensions, the

ONERA M6 wing was selected as a baseline geometry. The ONERA M6 wing was designed in

1972 by the ONERA Aerodynamics Department as an experimental geometry for studying three-

dimensional, high Reynolds number flows with some complex flow phenomena (transonic shocks,

shock-boundary layer interaction, separated flow). It has become a classic validation case for CFD

codes due to the available geometric description, complicated flow physics, and the availability of

experimental data.

This unsteady test case was performed in inviscid flow at a transonic Mach number with the
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(a) Surface contours of pressure coe�cient.

(b) Surface sensitivity contours for a torque objective function.

(c) FFD box along with the baseline and final shape for the turbine design.

Figure 5.13: Pressure coe�cient, surface sensitivity, and shape modifications for the NREL Phase
VI wind turbine.
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wing pitching about an axis that is perpendicular to the root airfoil section of the wing and passes

through its quarter-chord location. The specific flow conditions were as follows: a reduced frequency

w
r

of 0.1682, M1 = 0.8395, a mean angle of attack of 3.06 degrees, and a pitching amplitude of 2.5

degrees.

(a) Surface mesh topology showing the wing surface and
symmetry plane.

(b) Wing surface with the surrounding FFD box.

Figure 5.14: Surface mesh for the inviscid case and FFD box for the pitching ONERA M6 numerical
experiment.

The baseline unstructured mesh consists of 582,752 tetrahedral elements and a total of 108,396

nodes. Flow tangency is satisfied on the wing surface, a symmetry plane is used to reflect the

flow about the plane of the root airfoil section to mimic the e↵ect of the full wing planform, and

characteristic-based boundary conditions are applied at the far-field. The surface meshes for the

wing geometry and symmetry plane are shown in Fig. 5.14. All simulations of the pitching wing

were time-accurate (dual time-stepping) with 25 times steps per period for a total of 10 periods.

This a↵orded adequate time for transient e↵ects to wash away and for well-resolved time-averaged

behavior in the periodic steady state. For the unsteady adjoint, the solution at each physical time

step from the direct problem (including grid node coordinates and velocities) was written to disk

and then each was loaded in reverse fashion while integrating the adjoint equations backward in

physical time.

Fig. 5.15 contains the C
p

on the upper blade surface for three di↵erent time instances that

correspond to the incidence of minimum drag (left), mean drag (middle), and maximum drag (right).

From left to right, one can see the wing develop a strong shock in the outboard region. Fig. 5.15 also

contains surface sensitivity contours from the unsteady adjoint solution based on a drag objective

function. The corresponding surface sensitivity maps highlight the locations on the wing that, if

deflected inward or outward in the local normal direction, would most influence the drag. Notice
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Figure 5.15: Pressure coe�cient (top row) and surface sensitivity contours (drag objective function,
bottom row) for three time instances during one period of oscillation. The figures in the left column
correspond to the minimum drag incidence, those in the middle column are near the mean angle of
incidence, and those on the right correspond to the incidence of maximum drag.

that the highly sensitive areas correspond to the shock locations and the expansion regions upstream

of the shocks.

For gradient verification and for optimizing the pitching wing geometry, three-dimensional design

variables were defined using an FFD parameterization. Displacements in the vertical direction (z-

direction) was allowed for 50 total control points on the upper and lower surfaces of the FFD box.

The entire wing geometry was included within the FFD box, but the sensitivity at the nodes along

the sharp trailing edge was removed before computing gradient information. Before performing shape

design, we verified the continuous adjoint gradient of the time-averaged drag C̄
D

with respect to a

subset of the FFD control point variables on the upper surface against a finite di↵erence gradient.

Fig. 5.14 contains a view of the FFD box around the wing geometry, and the gradient comparison

appears in Fig. 5.16. The adjoint and finite di↵erence gradients are in good agreement for this 3D

problem.

A redesign of the pitching ONERA M6 wing was then performed using gradients obtained via
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(a) CL history for the initial and final pitching wing de-
signs. The average values are also shown as horizontal
lines. The average lift only changed slightly with the new
design.

(b) CD history for the initial and final pitching wing de-
signs. The average values are also shown as horizontal
lines. The average drag is greatly reduced for the final
design, especially near the incidence of maximum drag.

(c) Comparison of the time-averaged drag gradient ob-
tained by the continuous adjoint and finite di↵erencing
for a subset of the FFD control points above the upper
wing surface.

(d) Lift and drag values for each CFD evaluation during
the optimization process.

Figure 5.16: Force coe�cient histories, gradient comparison, and optimization history for the inviscid
pitching wing design.

the unsteady adjoint. The specific shape optimization problem was for the minimization of the

time-averaged drag C̄
D

with time-averaged lift C̄
L

and geometric constraints. The C̄
L

was required

to be greater than the original value of 0.2864 for the baseline pitching ONERA M6. The maximum

thickness at five spanwise sections of the wing was also constrained to be larger than a specified

value. After 16 evaluations, C̄
D

was successfully reduced by 29.1 %, and all of the constraints were

successfully met. Table 5.1 contains a summary of the results.

Fig. 5.16 contains the lift and drag histories over the 10 periods of oscillation for the initial and

final geometries. While the C
L

history is largely unchanged, the large peaks in the C
D

history have
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Table 5.1: Objective and constraint values for the baseline and final pitching wing design. The
maximum thickness is denoted by t

y/b

where the subscript gives the spanwise location of the section
as a percentage of span, b.

C̄
D

C̄
L

t0.07/b t0.29/b t0.51/b t0.72/b t0.94/b
Constraints · 0.2864 0.04765 0.04288 0.03820 0.03335 0.02867
ONERA M6 0.01760 0.28768 0.06359 0.05724 0.05095 0.04458 0.03831
Optimized 0.01248 0.28792 0.05887 0.05223 0.04707 0.04237 0.03746

been greatly reduced with the optimized design. This can be attributed to a reduction in the shock

strengths during pitching when the wing is at a high angle of attack. The pressure contours on the

upper surface at the incidence of maximum drag demonstrate this result, as shown in Fig. 5.17. The

strong shocks on the ONERA M6 wing are much weaker for the optimized design, and in particular,

the strong shock in the outboard region is almost entirely removed. The section profile shapes

and the surface geometries of the initial and final designs are compared in Fig. 5.18. The optimized

geometry features increased camper (to maintain lift), especially near the tip, and a slight thickening

of the wing near the trailing edge. All of the optimized sections exhibit a slightly reduced thickness,

which helps avoid drag penalties due to the development of shocks.

5.7 Pitching Wing in Turbulent Flow

As a final test of the unsteady adjoint capabilities, the pitching ONERA M6 wing design case from

above was repeated using the URANS equations. This problem is meant to demonstrate a large-

scale, viscous shape optimization with all of the mathematical and numerical complexity required

for tackling larger problems of industrial interest (with the only additional requirements being a

larger mesh and more computational resources).

The test case was performed in turbulent flow at a transonic Mach number with the wing pitching

about an axis that is perpendicular to the root airfoil section of the wing and passes through its

quarter-chord location. The specific flow conditions were as follows: a reduced frequency w
r

of

0.1682, M1 = 0.8395, a mean angle of attack of 3.06 degrees, a pitching amplitude of 2.5 degrees,

and a Reynolds number of 11.72 million.

The baseline unstructured mesh around the ONERA M6 consisted of 545,438 tetrahedral ele-

ments and a total of 96,252 nodes. The mesh spacing near the wall was set to achieve a y+ < 1 over

the entire wing surface. A no-slip condition is satisfied on the wing surface, a symmetry plane is

used to reflect the flow about the plane of the root airfoil section to mimic the e↵ect of the full wing

planform, and characteristic-based boundary conditions are applied at the far-field boundary. The

surface meshes for the wing geometry and symmetry plane are shown in Fig. 5.19. All simulations

of the pitching wing were time-accurate (dual time-stepping) with 25 times steps per period for a

total of 7 periods until reaching a periodic steady state. The total number of periods was reduced

from the Euler design problem simply to reduce computational cost.
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Figure 5.17: Pressure coe�cient contour comparison between the ONERA M6 and the final design
at the incidence of maximum drag for the inviscid case.

Figure 5.18: Shape comparison of the baseline (dotted) and final (solid) inviscid wing sections.
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Figure 5.19: Surface mesh topology showing the wing surface and symmetry plane for the URANS
case.

The pitching ONERA M6 wing was redesigned using gradients obtained via the viscous, time-

accurate adjoint. The shape optimization problem was the same as in the Euler case: minimization

of the time-averaged drag C̄
D

with time-average lift C̄
L

and geometric constraints on the spanwise

thicknesses. An aggressive constraint was imposed on C̄
L

, as it was required to be greater than a

value of 0.268 (a 4 % increase over the C̄
L

for the baeline geometry). The maximum thickness at

five spanwise sections of the wing was also constrained to be larger than specified values. The same

set of FFD control point variables were recycled from the Euler problem for the design variable

parameterization. After 11 evaluations, C̄
D

was successfully reduced by 20.3 %, and the geometric

constraints were met. The optimizer was also successfully able to increase the C̄
L

to a value of

0.266, although this was slightly less than the prescribed constraint value. The optimization was

terminated at this point to save excessive computation.

Fig. 5.20 presents the lift and drag histories over the 7 periods of oscillation for the initial and

final geometries. The C
L

history reflects slightly increased time-averaged lift, while the large peaks

in the C
D

history have again been reduced in the optimized design due to a reduction in the shock

strengths when the wing is at large incidence angles. Fig. 5.21 shows a comparison of the pressure

contours on the upper wing surface at the incidence of maximum drag. The strong shock in the

outboard region is almost entirely removed. The section profile shapes for the baseline and final

designs are compared in Fig. 5.20. As in the Euler case, the optimized geometry features increased

camber and a slight thinning of the sections. The modifications to the camber across the entire wing

span are more apparent in the RANS-based design.
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(a) CL history for the initial and final pitching wing de-
signs. The average values are also shown as horizontal
lines. The average lift increased slightly with the new
design.

(b) CD history for the initial and final pitching wing de-
signs. The average values are also shown as horizontal
lines. The average drag is greatly reduced for the final
design.

(c) Shape comparison between sections of the baseline
(dotted line) and final (solid line) wing designs.

(d) Lift and drag values for each CFD evaluation during
the optimization process.

Figure 5.20: Force coe�cient histories, section shape comparison, and optimization history for the
pitching wing design in turbulent flow.
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Figure 5.21: Pressure coe�cient contour comparison between the ONERA M6 and the final design
at the incidence of maximum drag for the URANS case.



Chapter 6

Conclusions and Future Directions

The major contributions of this dissertation are the detailed derivation, implementation, and appli-

cation of a new unsteady continuous adjoint formulation based on shape calculus for aerodynamic

design on dynamic meshes. A general framework has been presented that enables the immediate

recovery of adjoint formulations for di↵erent scenarios, such as for design in unsteady turbulent

flow, flow in rotating reference frames, or even steady inviscid flow. To ensure that the appropriate

physics are included, the present continuous adjoint surface formulation has been derived for the

unsteady, compressible RANS equations in ALE form with a generic source term.

A shape design framework was constructed within an open-source software suite for the numeri-

cal solution of PDEs and PDE-constrained optimization problems on general, unstructured meshes.

The core of the suite is a three-dimensional, finite volume solver within which the ALE form of the

governing equations (for solving unsteady flows on dynamic meshes) and the new unsteady adjoint

formulation have been implemented. Additional elements needed for shape design, such as mesh

deformation based on the linear elasticity equations, have also been incorporated into the suite as

needed during the course of this dissertation. The shape design framework was successfully demon-

strated through a collection of optimal shape design examples of rotating and pitching problems in

both two and three dimensions.

It is important to note again that, from the general scenario of viscous, unsteady flow under

which the present formulation was derived, the corresponding adjoint formulations for a variety of

problems can be immediately recovered from the general framework. Moreover, as the unsteady

continuous adjoint equations are a system of PDEs, they can be discretized in space and time using

any valid approach, which o↵ers valuable flexibility. For example, the equations can be immediately

discretized with a time-spectral operator to give a time-spectral adjoint approach. This and other

discretization strategies are currently under investigation and are included as future work.

In summary, the continuous adjoint formulation presented o↵ers a flexible and e�cient technique

(in terms of compute and memory costs) for obtaining shape design gradients. Obtaining a surface

formulation for shape design gradients (without a dependence on volume mesh sensitivities) and

113
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the ability to tailor numerical solution methods for the adjoint equations (to help mitigate numer-

ical sti↵ness and other convergence issues while avoiding memory overhead) make the continuous

adjoint approach particularly attractive. While not explicitly discussed in this dissertation, the un-

steady continuous adjoint formulation can also directly enable multidisciplinary design, analysis, and

optimization involving other time-dependent physics associated with these systems, such as their

structural or acoustic responses. Some preliminary work in this area has already begun [27].

The time-accurate formulation in this dissertation represents an advancement of continuous ad-

joint methods for performing design in unsteady flows. However, there are many potential future

directions, including tackling additional functionals, developing new numerical methods for the ad-

joint equations, or treating interesting multi-physics problems, for instance. The following is a list

of some possible future directions for this research:

• Remove the frozen viscosity assumption by either treating a turbulence model directly or by

injecting some information from an approximation or surrogate.

• Continuous, unsteady coupled-adjoints for multi-physics problems, such as aeroacoustics and

aeroelastics.

• Objective functions defined as integrals away from the design surface (inlet/outlets). In par-

ticular, there are interesting applications in active flow control (suction/blowing) that can be

treated with further development of the characteristic-based adjoint boundary conditions.

• Design variable parameterization is always critical and could use more attention. Gradient

smoothing approaches and advanced, “engineering-like” FFD variables could be pursued.

• Additional time discretizations can be directly applied to the present unsteady adjoint formu-

lation (time spectral, for instance).

• Investigate other numerical methods for spatially integrating the convective, viscous, and

source terms of the adjoint equations, or develop new numerical methods for the adjoint

equations with customized artificial dissipation to help maintain accuracy and robustness.

• E�cient techniques for handling large quantities of unsteady solution data for use with the

unsteady adjoint equations, including checkpointing techniques.

• Free trajectory problems (including optimization) where forces from CFD are coupled to the

equations of motion for rigid bodies (6DOF).

• Demonstrate the use of temperature-based functionals for unsteady problems.

• Demonstrate design in transient conditions (non-periodic problems) using the present formu-

lation.
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Jacobians

This appendix contains the Jacobians of the governing flow equations that arise during the lin-

earization process for the continuous adjoint derivation [14]. Here, we use index notation (repeated

indices imply summation), and �
ij

is the Kronecker delta. Defining for convenience a0 = (��1) and
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In the above Jacobians, ⇢ is the fluid density, ~v = {v1, v2, v3}T 2 R3 is the flow speed in a Cartesian

system of reference, p is the static pressure, � is the ratio of specific heats, and H is the total

enthalpy. Ac

i

is the Jacobian of the convective flux with respect to the conservative variables, Av

i

is

the Jacobian of the viscous flux with respect to the conservative variables, and Dv

ij

is the Jacobian

of the viscous flux with respect to the gradient of the conservative variables.

The Jacobian of the source term appearing during the linearization of the non-intertial form of

the governing equations is given here in both two and three dimensions. It is assumed that the

reference frame is under a steady rotation (~! = {!
x

,!
y

,!
z

}T), where the three components are in

the Cartesian x-, y-, and z-directions. In 2D, it is assumed that the fluid exists in the x-y plane

with an angular velocity in the z-direction. The Jacobian in 2D is
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In 3D, the steady rotation of the frame along an arbitrary axis results in the following Jacobian:

@Q
@U

=

0

B

B

B

B

B

B

@

· · · · ·
· · �!

z

!
y

·
· !

z

· �!
x

·
· �!

y

!
x

· ·
· · · · ·

1

C

C

C

C

C

C

A

.

Finally, it is often useful to apply the following transformation matrices in order to switch between

conservative and primitive variables [48]:

M =
@U

@V
=

0

B

B

B

B

B

B

@

1 · · · ·
v1 ⇢ · · ·
v2 · ⇢ · ·
v3 · · ⇢ ·
|~v|2
2 ⇢v1 ⇢v2 ⇢v3

1
(��1)

1

C

C

C

C

C

C

A

,

and

M�1 =

0

B

B

B

B

B

B

@

1 · · · ·
� v1

⇢

1
⇢

· · ·
� v2

⇢

· 1
⇢

· ·
� v3

⇢

· · 1
⇢

·
(��1)|~v|2

2 (� � 1)v1 (� � 1)v2 (� � 1)v3 (� � 1)

1

C
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C

C
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