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We propose in this paper an adjoint-based design optimization methodology that is
particularly efficient for flow simulation of helicopter rotors in combination with a Time-
Spectral (TS) method. The TS method is a fast and efficient algorithm to simulate the
unsteady periodic flows with the narrow frequency spectrum which are often encountered
in rotorcraft, turbomachinery, and fixed-wing flutter analysis. It represents the time dis-
cretization of the flow solver by Fourier-based modes/bases in which periodic steady-state
is assumed throughout the computation. The steady-state assumption reduces the com-
putational cost significantly, which makes it possible to use the efficient adjoint method
applicable to the rotor design problem. The adjoint solution method is widely accepted
as an inexpensive way to obtain the sensitivity information of flow solutions to a large
number of design parameters. Integrated with gradient-based optimization technique,
the adjoint method has been an essential module in aerodynamic/aero-structural shape
optimizations. As a preliminary study before we progress towards a more complete and
practical desgin optimization of helicopter rotor, this study focuses on the accuracy and
validity of our current design optmization tools. First of all, for the validation of the aero-
dynamic tools, a flight 8534 test condition of the UH-60A configuration is simulated with
time-spectral computation, and the accuracy and efficieny of the time-spectral method
is demonstrated in comparison with the time accurate results and experimental data. A
loose coupling of the time-spectral method and the structural analysis via UMARC is
also demonstrated to prove the capability of the time-spectral method to simulate the
helicopter rotor problem in a comprehensive way. Finally, a simple design application
problem of the hover flight condition is considered and an analysis with single blade cou-
pled with free wake model is employed. A baseline blade shape is modified to an optimal
shape to minimize torque while the thrust is maintained or enhanced.

INTRODUCTION

Adjoint method1, 2 has been successfully employed
as efficient and accurate technique in a wide range of
aerodynamic/aero-structural shape optimization.3–5

The ability to leverage an adjoint solution to inexpen-
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sively obtain the sensitivity of a particular cost func-
tion of interest with respect to a large number of design
variables has motivated the use of this tool in a variety
of design applications. This method becomes critical
in the gradient-based optimization process, since the
number of design variables can be rather independent
of the computational cost, and it provides higher ac-
curacy as opposed to a finite-differencing or complex
variable method at a much reduced cost.3 Therefore
a design problem, such as helicopter blade/planform
shape optimization, which inevitably involves a large
scale simulation with a huge number of design param-
eters can greatly benefit from the adjoint method.
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However, until now the application of the adjoint
method has been focused mainly on steady-state prob-
lems. Unsteady adjoint formulations require storing
the entire time history of the flow solutions, which en-
tails massive storage/memory requirements and com-
putational costs.6 With some efforts7 to ameliorate
this situation, the robustness and efficiency of the truly
unsteady adjoint formulation have not yet been fully
investigated. Difficulties involved in the implementa-
tion of the adjoint formulation for the unsteady flow
solvers make the problem more challenging. Therefore
because of the difficulties associated with the inher-
ent nature of the complicated unsteady flows around
it, its direct application to the design optimization of
helicopter rotors has been rather limited and less pop-
ular

On the other hand, the Time-Spectral (TS)
method11, 14, 15 has proved to be very fast and effi-
cient in the simulation of the unsteady periodic flows
that often occur in many flight configurations such as
pitching airfoils, rotating blades, and flapping wings.
A basic idea of the TS method is that a time deriva-
tive term in the unsteady flow equation is represented
by the inverse Fourier transform of its counterpart
in the stationary nonlinear frequency-domain.8 The
pseudo-spectral approach in the frequency domain to
simulate the unsteady periodic flows8 is not specifi-
cally new, but the TS method can further contribute
to the computational time savings by eliminating the
Fourier transformation process back and forth between
the time and frequency domain, and also by removing
the transient time to reach periodic steady-state. Its
accuracy has proved to be equivalent to the conven-
tional time accurate computation.

One of the major advantages of the TS method
in our analysis is that it makes the adjoint method
applicable to unsteady flow simulations. With the un-
steady time response replaced by a Fourier-based rep-
resentation, the entire computation marches through
pseudo-time as it would in a steady-state simula-
tion. Therefore a steady adjoint formulation combined
with the TS method becomes amenable to unsteady
periodic flows, and any gradient-based optimization
method can be easily combined with the adjoint solu-
tion method to locate the minimum of the objective
function.

Another distinctive characteristic of the flow simu-
lation of helicopter rotors is the significant impacts of
the structural loads and deformations on the aerody-
namic performance and vice versa. The aerodynamic
and structural disciplines are tightly coupled in the
helicopter rotor simulation, and the multi-disciplinary
aspects of both the flow analysis and the design op-
timization are inevitable. A number of efforts to
couple CFD and computational structural dynamics
(CSD) have recently been made with both tight and
loose coupling,17–19 and the results have proved that

these approaches are successful. Thus the capability
of the TS method to couple with the existing struc-
tural/comprehensive analysis tools needs to be inves-
tigated so that it can be used with confidence for the
analysis and design of helicopter rotors. The cost sav-
ings of the TS method should also be able to make the
coupling process more efficient.

The main purpose of this study is to examine the
accuracy and the validity of our current optimization
methodology, which efficiently combines time-spectral
and adjoint-based methods, by applying it to real de-
sign optimization problems.

A level flight condition of UH-60A configuration,
flight 8534, is validated using the time-spectral com-
putation. Flight conditions are simulated using both
the time-spectral and time accurate methods, and the
results are compared with the experimental data. The
time savings using the TS method is shown by directly
comparing the wall clock CPU time for both compu-
tations.

The validation of the accuracy of time-spectral and
discrete adjoint solution method is carried out by sim-
ulating the pitching motion of NACA 0012 airfoil. Two
flight conditions, supersonic and transonic, are simu-
lated, and the gradients of the average drag coefficient
with respect to the local shape changes on the airfoil
surface are calculated and compared with finite differ-
ence results.

Finally, our design optimization method is applied
to a helicopter rotor design problem. Although our
methodology has the potential to handle complicated
design problems, and the TS method shows great ef-
ficiency in highly unsteady problems, we have con-
ducted a preliminary study before moving on to a
complete rotor design at the forward flight conditions.
A straightforward hover flight condition of the UH-60A
configuration is chosen for a test optimization case.
Although a hover flight is a steady state, it is treated
as periodic unsteady to test our method. To further
simplify the problem, a single blade rotor is consid-
ered, and a free wake model is added to the computa-
tion to include the wake effects. The optimum blade
shape to minimize torque at a constant or improved
thrust is sought. The shape modifications are im-
posed by applying Hicks-Henne bump functions with
different amplitudes around the airfoil surface at the
various sections along the span. Sensitivity informa-
tion with respect to the shape changes are calculated
by the adjoint solution method, and a gradient-based
optimization algorithm, a nonlinear multi-dimensional
conjugate gradient method in our study, is employed
to locate the optimum shape of the blade through the
design iterations until the specified convergence is sat-
isfied.

This paper is organized as follows. The details of the
time-spectral method and the discrete adjoint solution
method are described first, and the validation study is
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shown by the simulation of various flow conditions.
Finally, results of the blade shape optimization are
presented and followed by the conclusion and future
work.

TIME-SPECTRAL METHOD

A simulation of helicopter flight inevitably entails
the complete computation of three-dimensional rotor.
The corresponding computational cost grows rapidly
in addition to the complexity related to the mesh con-
struction. Therefore, the efficiency and accuracy of the
numerical scheme of the URANS solver becomes cru-
cial. As the flows involved show an unsteady periodic
nature, a second order implicit Backward Difference
Formula (BDF) has been successfully used for its merit
of A-stability, allowing larger time steps than those
achieved using an explicit time-stepping method. A set
of nonlinear equations for the new state are solved and
advanced in time, utilizing inner iterations involving
dual time-stepping. Combined with several conver-
gence acceleration techniques,10 including multigrid
and implicit residual smoothing, its efficiency can be
remarkably improved. However, the computational
cost of this methodology can still be considerably large
when applied to unsteady periodic simulations where
at least two or three cycles (five or more for a pitching
motion) should be preceded before it reaches periodic
steady state.

Fully taking the advantage of the periodic nature of
the flow, and based on the idea of the Fourier series
form of the periodic responses, Hall et.al.11 proposed
Harmonic balance techniques to transform the un-
steady equations in the physical domain into a steady
problem in the frequency domain. This approach
has been extended as a non-linear frequency-domain
(NLFD) method11, 12 to Euler and full Navier-Stokes
equations and applied to a number of unsteady flow
analyses12 and aerodynamic/aero-structural shape op-
timization.8 Compared to the time accurate compu-
tations, the NLFD method can achieve a higher effi-
ciency by eliminating the cost to compute initial tran-
sient computation to reach the periodic steady-state.
However, the solutions we are interested in are in the
physical time domain, and thus an inverse Fourier
transform back into the time domain is required at
each solution iteration, making the frequency-domain
method less attractive.

On the other hand, in the same context of the NLFD
method of Fourier representations in time, the time-
spectral method has been proposed14 to further im-
prove the efficiency. The main advantage of the TS
approach over the frequency-domain method is that
the TS method represents the time derivative term in
the Navier-Stokes equations as Fourier series directly
in the time domain, and therefore eliminates the pro-
cess required by the frequency-domain method, to in
which the solutions must be transformed back and

forth to the time domain. The algorithm of the TS
method is also more straightforward to implement in
RANS solver. Details of the mathematical formulation
and stability analysis are described in Reference,14 and
only a brief summary is shown here.

The Navier-Stokes equations in a semi-discrete form
in the Cartesian coordinates can be written as

V
∂ω

∂t
+R(ω) = 0 , (1)

where ω is the vector of conservative variables,

ω =













ρ
ρu
ρv
ρw
ρE













, (2)

and R(ω) is the residual of spatial discretizations of
viscous, inviscid, and numerical dissipation fluxes.

A discretization of Equation 1 using a pseudo-
spectral formula13 renders equations

V Dtω
n +R(ωn) = 0 (n = 0, 1, 2, ..., N − 1) , (3)

where N is the number of time intervals, and Dt is
the spectral time derivative operator. If a pseudo-time
derivative term is directly added for a time integration
to steady state, then Equation 3 becomes,

V
∂ωn

∂τ
+ V Dtω

n +R(ωn) = 0 (n = 0, 1, 2, ..., N − 1) .

(4)
The efficiency of the TS method arises from the treat-
ment of the Dtω

n term in Equation 4. Instead of
transforming the entire equations into the frequency
domain, the inverse Fourier transform is performed
only to the time derivative term in Equation 3 as fol-
lows,

Dtω
n =

2π

T

k= N−1

2
∑

k=−
N−1

2

ikω̂ke
ikn∆t (n = 0, 1, 2, ..., N − 1),

(5)
where time period T is divided into N time inter-

vals, ∆t = T
N

, and ω̂k is a Fourier mode. This can be
rewritten in the time domain as suggested,13

Dtω
n =

2π

T

N−1

2
∑

m=−
N−1

2

dmω
n+m (n = 0, 1, 2, ..., N − 1),

(6)
A term dm can be rearranged as

dm =

{

1
2 (−1)m+1cosec(πm)

N
) : m 6= 0

0 : m = 0 .
(7)
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Thus a time derivative term in Equation 4 behaves as
a matrix operator, and an additional cost in the TS
method comes from the operation related to the mul-
tiplication of the matrix with the elements dm and the
vector ωn+m in Equation 7. The summation in Equa-
tion 6 involves the solutions at all time levels, and
the solution at each time instance depends upon the
solutions at all other time instances. Thus the solu-
tion at each time instance is updated simultaneously as
the computation advances in the physical time domain
until the desired convergence is achieved. This does in-
crease the memory requirement of the TS method, as
solutions at all time levels need to be stored. How-
ever, if the frequency contents of the problem we are
simulating do not span a wide range of the spectrum,
this method can considerably contribute to improving
the efficiency at an accuracy equivalent to that of the
time accurate computations.

DISCRETE ADJOINT METHOD

A design problem in our study can be posed as a gen-
eral form of the optimization problem which amounts
to finding the minimum of the objective/cost func-
tion, I, with respect to a number of design variables,
x, while satisfying a set of constraints, C. A cost
function, I, is also dependent upon the state vector,
ω, which can be obtained by solving the governing
equations, R. This design problem can be written in
mathematical formulation as follows,

Minimize I(x, ω(x))

w.r.t x ,

subject to R∗(x, ω(x)) = 0

Ci(x, ω(x)) = 0 (i = 1, ...,m) ,

where the governing equation R∗ in our problem rep-
resents the time-spectral form of the Euler or Navier-
Stokes equations in Equation 4, and m additional con-
straints are satisfied by the equations Ci(x, ω(x)). The
sensitivities of the cost function with respect to the de-
sign variables are obtained by applying the chain rule,
and a variation of I can be represented, to the first
order, as

δI =
∂IT

∂ω
δω +

∂IT

∂x
δx (8)

Since the derivative of the cost function is dependent
on both the design variables, x, and the state vector,
ω, a new flow solution is required for each parameter
with respect to which we are seeking a derivative. As
an alternative to the direct solution of Equation 8,
we introduce the governing equations as a constraint
using the method of Lagrange Multipliers, ψ, which
makes it possible to obtain an expression for δI that
is independent of δω. The gradient of I with respect

to n arbitrary number of design parameters can be
calculated without re-evaluating the flow.

In other words, since the governing equations of
time-spectral formulation of the Euler/Navier-Stokes
equations are given by R∗(x, /omega) = 0, we can in-
fer from the fact that the governing equations should
always be satisfied, that the variation of the residual
must be zero and can be derived as,

δR∗ =

[

∂R∗

∂ω

]

δω +

[

∂R∗

∂x

]

δx = 0 (9)

As δR∗ is identically zero, it can be added or sub-
tracted to Equation 8 to yield,

δI =
∂IT

∂ω
δω +

∂IT

∂x
δx −

ψT

([

∂R∗

∂ω

]

δω +

[

∂R∗

∂x

]

δx

)

=

{

∂IT

∂ω
− ψT

[

∂R∗

∂ω

]}

δω + (10)

{

∂IT

∂x
− ψT

[

∂RT

∂x

]}

δx

To get rid of the dependence of δI on δω, adjoint vari-
able, ψ can be chosen for the first part of the right
hand side of the Equation 10 to be zero. Thus as long
as ψ satisfies the adjoint equation,

[

∂R∗

∂ω

]T

ψ =
∂I

∂ω
, (11)

then the sensitivity Equation 8 becomes independent
of δω as follows,

δI =

{

∂IT

∂x
− ψT

[

∂R∗

∂x

]}

δx (12)

The adjoint matrix
[

∂R∗

∂ω

]

in Equation 11 is a sparse

matrix of constant coefficients (which depend on the
periodic flow solution ω) and can be set up by deriv-
ing or computing the dependence of the residual in one
cell of the mesh on the flow solution at every cell in
the domain. Since the residual evaluation has a com-
pact stencil (mostly composed of nearest neighbors)
the number of non-zero entries in each column of the
matrix is small. For the current flow solver, SUmb,
and the discretization used in this work, the residual
at one point is influenced by the flow solution at 33
neighboring cells in Navier-Stokes solutions and 9 cells
in Euler solutions. In addition, through the coupling
of the time-spectral derivative term, the solution at a
point also depends on the solution at the same point,
but at all the time instances considered in the solution
of the periodic problem. The influence of all other
time instances on one is included in an adjoint matrix
in a fully coupled manner rather than separated in the
right-hand side of the adjoint equation
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The computation of all non-zero entries of the ma-
trix and storage during the iterative convergence pro-
cess requires a considerable amount of memory. In-
stead, we recompute these terms at every iteration
of the adjoint solution, reducing the memory penalty.
Furthermore, we have chosen a solution procedure that
employs an ILU-preconditioned GMRES algorithm (in
the form of the PETSc toolkit) that has proved to be
both efficient and robust in the solution of the rela-
tively small problems treated in this work. For larger
problems, the convergence rates of this solution ap-
proach deteriorate, but the additional multigrid as a
preconditioner for the GMRES iteration is able to re-
store the convergence rates to more reasonable values.

The final sensitivity information in Equation 12 be-
comes very straightforward to obtain, as ∂I

∂x
and ∂R∗

∂x

are easy to compute. Once we know the objective func-
tion values and the gradient information with respect
to the design variables, any gradient-based optimiza-
tion algorithm can be applied to locate the optimum
value of the objective function. A conjugate gradient
method was chosen in our study. The summary of
the entire design optimization procedure is shown at
Figure 1.

Fig. 1 Procedure for design optimization

VALIDATION OF AERODYNAMIC

ANALYSIS TOOL

The accuracy of the analysis tools is crucial to deter-
mine the credibility of the design optimization results,
and a validation study was performed using our cur-
rent analysis tools, the time-spectral and adjoint solu-
tion method. Simulations of several level flight condi-
tions of a UH-60A configuration were carried out using
both the time-spectral and time accurate computa-
tion, and the results were compared with experiments.
A loose coupling of time-spectral computation with a
comprehensive analysis code was also carried out to
prove its efficiency for an aerodynamic and structural
coupling process.

An adjoint solution method implemented in the
time-spectral form of an inviscid flow solver was used

to simulate the pitching motion of the NACA 0012
airfoil, and the gradients of a time-averaged drag co-
efficient with respect to the airfoil shape changes were
compared with the finite difference results. An expen-
sive computational cost of the finite difference method
has limited the choice of the validation problem to the
simple NACA 0012 airfoil, but the accuracy of the cur-
rent discrete adjoint solution method has been shown
to be independent of the size of the problem.

Validation of the Time-Spectral Method

Time-Spectral Computation with Loose Coupling of
CFD/CSD

Time-Spectral analysis is coupled to a rotorcraft
comprehensive analysis, UMARC (University of Mary-
land Advanced Rotorcraft Code).20 The temporal
coupling method is unique to rotorcraft and is referred
to as ‘delta coupling’. The terminology ‘loose coupling’
is also used by rotary wing researchers to describe this
method. However, note that the method bears no re-
semblance to ‘loose coupling’ as used by fixed wing
researchers. Unlike the ‘loose coupling’ of fixed wing
research, the ‘delta coupling’ ensures strict time ac-
curacy of the response harmonics. The original ‘delta
coupling’, or ‘loose coupling’ was proposed by Tung
et al.21 in 1986. In its present form, it has served as
the cornerstone of the recent advances in trimmed ro-
torcraft CFD/CSD loads prediction in the U.S.17, 22, 23

and Europe.24–26 The original method is described in
Reference,21 and its current adaptations in any of the
above references (see for example References.17, 22) For
a comprehensive review of the contemporary rotary
wing CFD/CSD efforts, see Datta et al.27

During the Time-Spectral computa-
tion/Comprehensive analysis coupling, the latter
supplies the structural dynamic model, the trim
model, and the airload sensitivities as required by the
delta coupling method. The trim model is a validated
full aircraft, six-axes, free flight trim model.20, 22 In
the present study, the time-spectral computation is
used in its single-blade form. Only the near-field is
calculated by RANS. The far-field, which includes
the effect of all blades, is accounted for via the
inflow generated by a free wake model. The inflow
is incorporated within the near-blade CFD domain
using the field velocity approach of Sitaraman and
Baeder.28 The wake model is coupled iteratively
along with the vehicle trim iterations.

The UH-60A counter 8534 is a vibration critical high
speed (155 kts) flight. It is characterized by a speed
ratio of µ = 0.368 and the vehicle weight coefficient to
solidity ratio CW /σ = 0.0783. The calculated thrust
coefficient to solidity ratio is CT /σ = 0.084. The pri-
mary mechanisms of rotor vibratory loads at this flight
were identified by Datta and Chopra29 as: (1) large
elastic twist deformations near the blade tip, and (2)
inboard wake interactions on the advancing side. The
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elastic twist deformations are caused by 3-D unsteady
transonic pitching moments near the blade tip, which
can only be predicted using CFD. The inboard wake
interactions can only be predicted in presence of the
correct elastic twist deformations. In the case of single-
blade CFD, the inboard interactions can be predicted
using a dual peak or a moving vortex type roll-up
model. In the present simulation, a moving vortex
model was used.

The evolution of predicted pitching moments (ap-
proximately a quarter-chord) near the blade tip with
coupling iterations is shown in Figure 3. Usually, 6 to 8
iterations are necessary for a converged time accurate
solution. The present results correspond to the fourth
iteration. The peak pitching moments are correctly
predicted near the tip (96.5% R). Thus the primary
mechanism of the 3-D unsteady transonic shock relief
appears to be in place. The unsteady waveform in the
first quadrant, however, is not satisfactory, which can
be explained by the fact that this high frequency wake
integration can not be captured with TS method un-
less more time instances are used. The discrepancy is
more pronounced at the 92% R.

The pitching moments determine the elastic twist
deformations. The twist deformations are shown in
Figure 2. The waveforms from the baseline UMARC
(unsteady lifting-line based analysis) and CFD are
compared with that obtained using measured airloads
on the UMARC structural model. In absence of mea-
sured deformations, the latter, obtained from a vali-
dated structural model,29 provides a reasonable basis
for comparison. The elastic twist deformation shows
the same trends as the pitching moments. The gen-
eral trend is improved (i.e, closer to that obtained
using measured airloads). However, the waveform in
the first quadrant (between 0 and 90◦) shows a sig-
nificant discrepancy. Capturing the waveform here is
important for the accurate prediction of the vibratory
lift harmonics (3-20/rev). Even though not accurate,
the twist deformation is adequate enough to provide
the correct vibratory lift phase near the tip (see Fig-
ure 5.) The result of the correct vibratory lift phase
is seen in Figure 4, where the phase of the predicted
advancing blade lift moves closer, gradually, to that of
the test data.

Comparison with Time Accurate Computation

A time-spectral computation has been used to sim-
ulate three level flight conditions of the UH-60A con-
figuration as a test cases, flight 8534, 8515, and 9017,
and the corresponding sectional force results have been
compared with the time accurate results and experi-
ments. Although good agreements for all the test cases
have been found and demonstrated in Reference,16

only the results from the flight 8534 test case are shown
in this paper.

Two separate approaches to flow simulation were

Fig. 2 Changes of twist distribution during cou-
pled runs.

rotating speed (rad/sec) 27.025

Mtip 0.6415
M∞ 0.2359

advance ratio 0.368
Reynolds number(chord based) 3.22 × 107

shaft angle (o) -7.31

Table 1 Flight conditions of 8534 test case

considered: single blade analysis with free wake cou-
pling, and complete four blade analysis. A mesh
topology for each approach is demonstrated in Fig-
ure 6, and the flight condition is summarized at Ta-
ble 1. A free wake model was added to the single
blade analysis to account for the wake effects and
other blades. Prescribed deformation obtained from
OVERFLOW/CAMRAD analysis was imposed for an
aero-elasticity effects, and CFD/CSD coupling is not
considered. Time instances of as many as fifteen were
used for the time-spectral computation to enhance the
accuracy. A previous study16 indicates that the fewer
numbers of time instances were sufficient for the ac-
curate simulation of the flight 8534 case, as the blade
and wake interactions were less severe than in the other
flight conditions. However the accuracy of the solution
appears to be improved for the cases of flight 8515 and
9017 where wake interactions and dynamic stall cycles
were not moderate and can not be computed without
some higher frequency content.

Figures 17, 18, and 19 show the results of the sec-
tional normal force, chord force, and pitching moment
from the single blade analysis. The same flight condi-
tion was simulated using four blade analysis and the
results are plotted at Figure 20, 21 and 22. Good
agreements between single and four blade analysis in-
dicated that the wake interference in flight 8534 was
not critical and free wake coupling was a reasonable
alternative to the complete wake capturing method at
a better computational cost.

A computational time saving for time-spectral com-
putation was estimated by a direct comparison with
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Fig. 3 Changes of sectional pitching moment during coupled runs.
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Fig. 4 Changes of sectional normal forces (0/rev∼20/re) during coupled runs.
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Fig. 5 Changes of sectional normal forces (3/rev∼20/rev) during coupled runs.

7 of 19



a) C-O-type mesh around single
blade (single-block with 568,816
nodes)

b) mesh around 4 blades (536
blocks with 2,401,776 nodes)

Fig. 6 Grid topology for UH60

computation method Time (sec)
/per one MGcycle

time accurate 4.47
time spectral 49.611

(9 time instances)
time spectral 92

(15 time instances)

Table 2 Comparison of wall clock CPU time be-
tween time-spectral and time accurate method.

a time accurate computation of wall clock CPU time
for the flight 8534 simulation using single blade anal-
ysis with the results shown in Table 2. Scaling factors
of five or more were observed for both computations,
to be converged up to 10−4 order (from the L2 norm-
based residual of the density). A conventional second
order BDF scheme was used with a time accurate
scheme, 30 multigrid inner iterations, 0.2 ∼ 0.3o time
step and 2 ∼ 3 revolutions. Nine to fifteen time in-
stances were used in time-spectral computation. We
also employed a free wake coupling method for a hover
flight simulation, which is considered in the design op-
timization application. The computational time sav-
ing is critical for the optimization procedure to shorten
its turnaround time for function evaluations.

Validation of Time-Spectral and Adjoint

Solution Method

A good way to validate the accuracy of the proposed
methodology is to compare the sensitivity information
with other gradient computation methods that have

equivalent accuracy. Such methods as finite difference,
complex variable and automatic differentiation meth-
ods have different characteristics in their accuracy and
computational cost. A finite difference method was
chosen for the comparison as its implementation is easy
and straightforward; however the step sizes are care-
fully taken to minimize the dependence on the step
sizes. On the other hand, the Automatic Differen-
tiation (AD) method31 uses numerical algorithm to
evaluate the adjoint solutions by a computer program.
It achieves numerical accuracy higher than that of the
manual derivation as it is not associated with round-
of errors due to democratization or cancellation errors
due to finite number precision. Its application to the
solution of discrete adjoint method is currently being
pursued.

A pitching motion of a NACA 0012 airfoil was sim-
ulated at two flow conditions, both transonic (M∞ =
0.8) and supersonic (M∞ = 2.0) inviscid flows. The
airfoils were pitched about the quarter chord with a
reduced frequency of k = 0.2 and with a pitching mo-
tion amplitude of ±5o. The corresponding angular
frequencies were ω = 35.43, 88.5HZ for the transonic
and supersonic flow condition respectively. The test
cases presented here are quasi-three-dimensional in
that they consist of a two-dimensional airfoil extruded
in the third direction. A total of six time instances for
a period of the pitching motion were used for both the
flow and discrete adjoint solution. A body-fitted O-
mesh with 81× 17× 9 grid points were used for all the
calculations. Figure 7 shows Mach number contours
for four snapshots of the time-spectral solution for the
transonic test case, and the supersonic case is shown
in Figure 8. A comparison of the time-spectral results,
with a time accurate computation using second-order
backwards difference formula and a dual time-stepping
approach, has shown good agreements, although the
comparison is not included in this paper. A similar
agreement is found for the supersonic flow simulation.

The corresponding snapshots for the discrete, time-
spectral, and adjoint solutions for both the transonic
and supersonic cases (for the first adjoint variable
only) can be found in Figures 9 and 10. To assess
the accuracy of the resulting discrete adjoint solution,
a finite difference method was used to compare the
sensitivity of the time-averaged coefficient of drag

CD =
1

T

∫ T

0

CD(t)dt (13)

with respect to the amplitude of Hicks-Henne bump
functions centered at mesh points on the upper surface
of the airfoil. The Hicks-Henne functions are smooth
functions that can be used to modify the shape of the
NACA 0012 airfoil. Their effect (appropriately non-
dimensionalized) can be seen in Figure 12.

The values of the sensitivities of the average drag
coefficient (over a pitching cycle), CD (shown in Fig-
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a) α = 0.0o, downstroke b) α = −5.0o

c) α = 0.0o, upstroke d) α = 5.0o,

Fig. 7 Four snapshots of the local Mach number
contours for a pitching NACA 0012 airfoil in tran-
sonic flow, M∞ = 0.8, k = 0.2, ∆α = ±5

o

a) α = 0.0o,downstroke b) α = −5.0o

c) α = 0.0o,upstroke d) α = 5.0o,

Fig. 8 Four snapshots of the local Mach number
contours for a pitching NACA 0012 airfoil in su-
personic flow, M∞ = 2.0, k = 0.2, ∆α = ±5

o

ure 11) computed using both the time-spectral adjoint
solutions and the method of finite differences (with
carefully chosen step sizes to yield accurate deriva-
tives). The agreement between these two approaches
gives us confidence that the results of the time-spectral
adjoint calculations are correct. Small differences be-
tween the two sets of results still exist, and are at-
tributed to the fact that the time-spectral adjoint
operator we have implemented has neglected some
variations of the residual R∗(w) involving the spec-
tral radius computation and the artificial dissipation
coefficients.

RESULTS

The main purpose of the current study is to as-
sess the validity and accuracy of the current design

a) α = 0.0o,downstroke b) α = −5.0o

c) α = 0.0o,upstroke d) α = 5.0o,

Fig. 9 Four snapshots of the local Mach number
contours of the first adjoint variable for a pitching
NACA 0012 airfoil in transonic flow, M∞ = 0.8, k =

0.2, ∆α = ±5
o

a) α = 0.0o,downstroke b) α = −5.0o

c) α = 0.0o,upstroke d) α = 5.0o,

Fig. 10 Four snapshots of the local Mach number
contours of the first adjoint variable for a pitching
NACA 0012 airfoil in supersonic flow, M∞ = 2.0, k =

0.2, ∆α = ±5
o

optimization tool and to investigate its capability for
future applications to more viable and complete de-
sign problems. A simple yet realistic rotorcraft prob-
lem is considered in this paper. The choice of the
hover flight condition made the optimization problem
more straightforward, as the trim condition was not
violated exceedingly. An optimum blade shape that
minimized torque was sought while a total thrust pro-
duced by the baseline configuration was maintained
constant or enhanced. A blade of UH-60A configu-
ration was chosen for the baseline, and single blade
analysis described from the earlier section was carried
out with the mesh topology shown at Figure 6(a). An
Mtip was 0.65, and fixed collective pitch angle was set
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Fig. 11 Comparison of sensitivity derivatives ∂CD

∂bi

using discrete adjoint solution and finite differences
for the supersonic (top) and transonic (bottom)
test cases.

11.8◦. A total of three time instances were used for
time-spectral computation and the aero-structural de-
formation was prescribed at each time instance from
the previous analysis using OVERFLOW/CAMRAD
computation.17

Fig. 12 Non-dimensional effect of Hicks-Henne
perturbation on the surface of the airfoil.

Another advantage of optimizing the hover condi-
tion is that constraint handling became more straight-
forward as the number of constraints was reduced
by excluding the trim related parameters. We em-
ployed a nonlinear multi-dimensional conjugate gra-
dient method for a gradient-based optimization al-
gorithm. Since the constraint handling in conjugate
gradient method was not straightforward, a constraint
of constant thrust was integrated into the objective
function as an implicit form via the properly weighted
penalty.Also a second form of an objective function
without a constraint of constant thrust was considered
as the ratio of torque to thrust, if improved thrust is
allowed.

Using the nondimensionalized coefficients of torque
and thrust, mathematical formulations of the objective
functions are shown at Equation 14,

I = CQ/CT , (14)

I = CQ + α ((CTo
− CT ))

2
,

where CQ and CT are the coefficient of torque and
thrust, respectively, after the blade shape is modified,
and CTo

is the coefficient of the initial thrust of the
baseline. Blade shape modifications were obtained by
imposing smooth Hicks-Henne bump functions on the
surface of the airfoils along the various span sections,
and the corresponding new meshes were generated us-
ing the mesh warping routine without the need for the
regenerating the complete meshes. As the gradient-
based optimization algorithm performs well with the
smooth design space, the shape changes, thus the am-
plitudes of the bump functions are limited to small
amounts, with the assumption that few variations in
the shape modifications produces smooth design space
and less deviation in structural deformation from the
initial values. A total of nine sections along the span
were selected, with even distribution on the blade
midboard sections and close distribution on the blade
inboard sections and tip sweep region. Perturbations
were applied at each section on ten locations of the
airfoil surfaces, and the maximum amplitudes of the
bumps were scaled to the local airfoil thickness. A
total of 90 design variables (the amplitudes of bump
functions) were introduced, and it has been tested that
the inclusion of more design variables do not signifi-
cantly affect the results.

Prescribed aero-elastic deformation was set as con-
stant, and maintained as the initial value throughout
the design iterations where the blade shape changed,
although this is not practically true. If the blade shape
were to experience significant variation, such as that
required for planform shape optimization, structural
deformation must be properly updated at each design
iteration through CFD/CSD coupling. However, when
we introduced a small changes only in design variables,
we assumed that aero-elastic deformation would not
deviate much from the initial values.

Optimized results were obtained after 19 design it-
erations and a total of 12% torque reduction at the
7% thrust increase. These values came at a surprise,
considering the small variations in the airfoil shapes
(mainly camber changes), but this fact implies that
aerodynamic loads are very sensitive to even small
changes in the airfoil shapes. The corresponding shape
of the optimized blade is shown at Figures 13 and 14.
As the shape changes are limited to the small vari-
ations, the direct comparison of shapes between the
baseline and the optimized blade is not obvious.

Changes in the pressure distribution on the blade
are demonstrated in Figures 15 and 16 on the upper
and lower surfaces respectively. It can be noted that
pressure around the tip area becomes lower and con-
tributes to reducing the pressure drag.
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CONCLUSIONS AND FUTURE WORK

A new optimization methodology was proposed
based on the combined time-spectral and adjoint-
based approaches for the design problem involving un-
steady periodic flows. The accuracy and efficiency of
the time-spectral solution method was validated by the
simulation of the flight 8534 test case of the UH-60A
configuration, and the results showed good agreements
with time accurate results and the experimental data.
The adjoint solution method with the time-spectral
implementation of the flow solver was applied to the
simulation of the pitching motion of a NACA 0012

a) overlaid blade shapes (up-
per surface), red:baseline, opti-
mized:blue

b) overlaid blade shapes (lower
surface), red:baseline, opti-
mized:blue

Fig. 13 Comparison of blade shapes between base-
line(red) and optimized(blue)

X
Y

Z

Fig. 14 Shape changes of the airfoils along the
span (baseline(red) and optimized(blue)).

X

YZ

Pressure

1.06053
1.00789
0.955263
0.902632
0.85

a) baseline

X

YZ

Pressure

1.06053
1.00789
0.955263
0.902632
0.85

b) optimized

Fig. 15 Comparison of the surface pressure con-
tours between the baseline and the optimized (on
the upper surface).

Z

X

Y

Pressure

1.06053
1.00789
0.955263
0.902632
0.85

a) baseline

Z

X

Y

Pressure

1.06053
1.00789
0.955263
0.902632
0.85

b) optimized

Fig. 16 Comparison of the surface pressure con-
tours between the baseline and the optimized (on
the lower surface).
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airfoil, and the gradients of the time-averaged drag
coefficient with respect to the airfoil shape changes
were compared with the finite difference results. Good
agreements were found for both the supersonic and
transonic flow conditions. Finally a simple optimiza-
tion problem was solved for a helicopter blade shape
design at the hover flight condition. A minimization of
torque at a constant or improved thrust was pursued
by a multi-dimensional conjugate gradient method. As
much as 12% reduction of torque was observed, while
the total thrust was enhanced by 7%. This fact in-
dicates that our design optimization methodology is
suited for helicopter rotor design. However, to fully
employ our methodology to realistic design cases of
helicopter rotors, such as at the forward flights, a num-
ber of issues should be resolved. First, a study on
the proper choice of design variables should proceed
for a realistic helicopter rotor design. More design
variables, in addition to the design variables not only
limited to the camber changes in our study, will be able
to produce further improvement in aerodynamic per-
formance. However, when adjoint-based optimization
uses gradient information to locate optimum values,
special care must be taken to ensure smooth design
space.

A more viable design test for helicopter flight is to
optimize the rotor shapes during the forward flight
condition, where our design approach using time-
spectral solution method is best suited. However
highly unsteady motion during the forward flight poses
numerous problems. A more rigorous form of con-
straints to satisfy the trim condition needs be included
in the optimization process, and a more efficient and
robust constrained optimization algorithm is neces-
sary. Our design methodology is currently tested with
NPSOL SQP method and ready to be applied to the
realistic design optimization of helicopter rotors, and
optimization results with a better optimization algo-
rithm will be shown in the future. Finally the current
adjoint solver implementation in the Euler flow solver
will be extended to the full Navier-Stokes flow solver.
Introducing an automatic differentiation algorithm31

would enable the adjoint solver development to be eas-
ier and more straightforward, and this is also part of
our on-going research.
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Normal force comparison for a single blade with wake coupling

Fig. 17 Section normal force of flight 8534 (one blade case with wake coupling (red-TA; green-TS)).

14 of 19



0 90 180 270 360
−0.01

0

0.01

0.02
r/R=0.225

C
c*M

2

0 90 180 270 360
−0.01

0

0.01

0.02

0.03
r/R=0.400

0 90 180 270 360
−0.02

−0.01

0

0.01

0.02

0.03
r/R=0.550

0 90 180 270 360
−0.01

−0.005

0

0.005

0.01

0.015
r/R=0.675

ψ

C
c*M

2

0 90 180 270 360
−0.015

−0.01

−0.005

0

0.005

0.01
r/R=0.775

ψ
0 90 180 270 360

−0.02

−0.01

0

0.01

0.02
r/R=0.865

ψ

0 90 180 270 360
−0.02

−0.01

0

0.01

0.02
r/R=0.920

ψ

C
c*M

2

0 90 180 270 360
−0.01

−0.005

0

0.005

0.01

0.015
r/R=0.965

ψ
0 90 180 270 360

−0.02

−0.01

0

0.01

0.02
r/R=0.990

ψ

 

 

exp
TA
TS (15)

Chord force comparison for a single blade with wake coupling

Fig. 18 Section chord force of flight 8534 (one blade case with wake coupling (red-TA; green-TS)).
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Pitching moment comparison for a single blade with wake coupling

Fig. 19 Section pitching moment of flight 8534 (one blade case with wake coupling (red-TA; green-TS
)).
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Fig. 20 Section normal force of flight 8534 (four blade case (red-TA; green-TS)).
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Fig. 21 Section chord force of flight 8534 ( four blade case (red-TA; green-TS)).
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Fig. 22 Section pitching moment of flight 8534 (four blade case (red-TA; green-TS)).
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