
CHIMPS: A High-Performance Scalable Module for

Multi-Physics Simulations

J. J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino. G. Kalitzin,

P. LeGresley, K. Mattsson, G. Medic, P. Moin, H. Pitsch, J. Schlüter∗, M. Svärd,

E. Van der Weide, D. You, X. Wu†

Center for Integrated Turbulence Simulations, Stanford University, Stanford, CA 94305, U.S.A.

As computational methods attempt to simulate ever more complex physical systems
the need to couple independently-developed numerical models and solvers arises. This of-
ten results from the requirement to use different physical or numerical models for various
portions of the domain of interest. In many situations it is also common to use different
physical models that influence each other within the same domain of interest. The inter-
action between these models normally requires an exchange of information between the
participating solvers. When the solvers that exchange information are distributed over a
large number of processors in a parallel computer, the problem of exchanging information
in an efficient and scalable fashion becomes complicated. This paper describes our efforts
to develop a Coupler for High-Performance Integrated Multi-Physics Simulations library,
CHIMPS, that can enable the exchange of information between solvers and that automates
the search, interpolation and communication processes in order to allow the developer to
focus on other matters of interest such as the appropriate strategies to couple the solvers
in an accurate and stable fashion. Our basic approach, the underlying technology, the
CHIMPS API, and a number of examples are presented. In addition, a series of appen-
dices are included with actual sample code that can be used to become familiar with the
CHIMPS library.

I. INTRODUCTION

Although during the last three decades there has been an explosive growth in the use of computational
tools, the process of developing scientific software has not changed considerably. This process typically

follows three phases: the first phase consists of the definition of the software requirements; next a variety of
mathematical and physical models are identified and, finally, a single computational code is written to fulfill
all requirements. With this approach, additional features can only be added if they are compatible with the
overall structure of the software/algorithms already implemented. In addition, updates and modernization of
the code structure typically require a complete rewrite and, therefore, a considerable investment. Moreover,
portions of the code that may be considered to be legacy (for which little or no expertise is available) can
be difficult to interface with the rest of the software.

An alternative approach is to build flexible computational infrastructures that are made up of several
independent solvers that can be easily integrated. Each component performs a specific task and addresses a
specific physical aspect of the problem. The ability to easily integrate these solvers ensures that new features
or updated models can be included without disrupting the entire infrastructure and with a reasonable level
of effort. An additional benefit of this strategy is that various existing component modules or solvers
can be rapidly combined to solve new problems without the tremendous overhead needed to create a new
environment from scratch.

Large multidisciplinary problems require the collaboration of a large group of scientists and the devel-
opment of an extensive simulation environment. Within the Department of Energy Advanced Simulation

∗Current address: Nanyang Technological University Singapore, Aerospace Division
†Authors are listed in alphabetical order.

1 of 28

American Institute of Aeronautics and Astronautics

and Computing (ASC) program, the Center for Integrated Turbulence Simulations (CITS) at Stanford Uni-
versity is performing simulations of the flow through an entire jet engine. The radically different physics,
length scales and dynamics of the problem prompt the use of a range of simulation technologies. In the com-
pressor and turbine the flow is transonic, includes a very large number of moving parts and turbulence can
be described using Reynolds averaging ideas. A compressible Unsteady Reynolds-Averaged Navier-Stokes
(URANS), structured multiblock code is a good choice to capture the flow features in the turbomachinery
components with reasonable cost. On the other hand, in the combustor, low speed air is mixed with liquid
fuel and reactions take place. Consequently, an unstructured mesh Large-Eddy Simulation (LES), reactive
flow solver is required in the combustor to reproduce the intricate injector passages and to account for the
proper levels of mixing and cooling flows. In addition, the modeling of the liquid fuel atomization requires
the detailed computation of the evolution of liquid sheets and their interaction with the gas phase that ends
with atomization. Finally, if aero-structural phenomena are to be accounted for, it is necessary to couple
the fluid and structural solvers through an appropriate fluid-structure interface.

The interaction between all of these solvers is usually accomplished via communication of information
computed by each solver. This interaction can be based on artificially-imposed boundary conditions or
simply on information interpolated between the grids that each solver computes on. Although the problem
of interpolation may appear straightforward, it is in fact complicated by two fundamental issues. Firstly,
in modern computing environments, the participating codes are usually domain decomposed into a large
number of processors. The data to be interpolated can reside anywhere in the distributed memory of a
parallel computer. The search process that identifies the mesh cells that provide information to a given
solver (and the processor that they reside on) and the ensuing exchange of information have often been
described as the M × N problem in the literature.1 The number of processors that are typically involved
in these search, interpolation, and communication patterns can be very large. The efficient and scalable
(both in CPU time and in used memory) solution of the M ×N problem is not straightforward. Secondly,
although linear (bi-linear, tri-linear) interpolation is relatively straightforward to implement, it is unable
to guarantee the accuracy, conservativeness, and stability of the coupled solution except in the limit of an
infinitely fine mesh: the order of accuracy of a coupled solution can drop to first order if care is not taken
to ensure accuracy.

The current implementation of CHIMPS addresses the first issue: the solution of the M × N problem
using tri-linear mappings for the solution inside each element of a mesh. At the moment, CHIMPS does not
provide any assistance with the second issue (it is left entirely to the user/developer) although future efforts
will focus on addressing this issue within the context of the CHIMPS API.

This paper is organized to address the following goals:

• Provide an overview of the current and future functionality and of the performance of CHIMPS.

• Describe the full CHIMPS API and the underlying technology choices we have made to implement the
functionality in the API.

• Provide some representative test cases (including the full source code in the appendices) so that this
paper may be used as a Users’ Manual for CHIMPS.

• Describe our experience during the development of CHIMPS and the ways in which our approach to
code development and research have been changed.

The following sections focus on each of these goals and attempt to provide a detailed description and rationale
for each of the topics.

II. CHIMPS Overview and Functionality

CHIMPS was conceived as a library (with its associated API) designed to facilitate the setup and exe-
cution of large-scale integrated simulations where interpolated information is requested from solver domains
that are distributed (in the parallel computing, domain decomposition sense). As such, CHIMPS is merely an
interpolation engine (albeit an efficient, distributed, and scalable one) that, together with some participating
solvers and a main driver script, can be used to create integrated simulations. This efficiency is achieved by
relieving the developer from the tedious task of figuring out how to interpolate and exchange information
between a number of distributed-memory solvers: a task common to many integrated simulations that is, in

2 of 28

American Institute of Aeronautics and Astronautics

principle, conceptually straightforward but, in practice, is difficult to do with reasonable performance and
scalability. It is our intention to incorporate additional functionality of this kind into the CHIMPS library:
operations that are common to a variety of integrated simulations and can be abstracted so that the user may
use this functionality in new and unexpected ways. In the future this may include hole-cutting approaches
for general unstructured overset computations, conservative interpolation techniques, and methodologies to
guarantee the accuracy and stability of the participating simulations.

Figure 1. A schematic representation of the CHIMPS library, the necessary driver program/script, and the
participating parallel solvers. The green arrows represent spatial locations at which one of the participating
solvers requires interpolated information. The purple arrows represent the mesh and solution information that
each solver provides so that CHIMPS may service interpolation requests from that or other solvers. The brown
arrows represent the return transfer of interpolated information requested by the solvers from the CHIMPS
library.

A schematic of a typical integrated simulation that uses CHIMPS is presented in Figure 1. It consists of
three basic components:

• The participating solvers/applications (labeled Code 1 through Code M).

• The driver program / script (currently both Python, Fortran, and C/C++ are supported).

• The CHIMPS library / extension module.

The solvers/application are the basic building blocks providing the algorithms/physical models required
to perform the simulations on arbitrary portions of the entire domain. These are typically (although not
necessarily) parallel, domain decomposed applications that require information from each other in order to
accomplish an integrated task. In order to interact with CHIMPS, these applications must be written in a
language that can be called by either Fortran, C/C++, or Python. With these choices virtually any scientific
computing application can interact with CHIMPS.

The driver program / script (depending on the programming language in which it is written), on the other
hand, is responsible for coordinating the execution and information exchange between all the participating
applications. It is truly the program / script that is meant to be written by the engineer or scientist in order
to create an integrated simulation. In our view, the desirable properties of this driver program / script are
as follows:

• It should be relatively concise.

• It should embody the overall strategy to couple multiple codes and, as such, it is responsible for such
things as load balance, synchronization, information exchange and the stability and accuracy of the
resulting integrated calculation.

3 of 28

American Institute of Aeronautics and Astronautics

• It should mainly consist of API calls (to the applications and to CHIMPS) that broker the information
exchange.

Finally, the CHIMPS library / extension module, is the communication hub that enables scalable com-
munication between multiple applications through the use of an efficient parallel search engine. Note that
CHIMPS is provided as both a library (so that Fortran and C/C++ driver programs can link it) and a
Python extension module that Python driver scripts can import.

For the remainder of this paper, we will use the terminology driver program and driver script interchange-
ably to indicate that our discussion is completely independent of whether the driver is written in traditional
languages such as Fortran and C/C++ or in a scripting language such as Python. The structure of a typical
driver program contains the following steps:

1. Initialization: the parallel environment for the integrated simulation is created and defined, the ap-
plication codes are assigned to the available processors and the computation is properly load balanced.

2. Registration: each application defines its computational domain, grid and associated data, and
interpolation locations for CHIMPS so that future exchanges of information (via interpolation) can
take place.

3. Interface set-up: the logical connections between the locations where interpolated data are needed
and the grid/data information from where the interpolated data may be obtained. Each such connection
is termed an interface. Multiple interfaces can be created.

4. Data exchange: data at all interfaces is updated so that the interaction between solvers takes place.

5. Application execution: each component application performs the necessary solution steps before
information is exchanged.

6. Exit and clean up processes. Termination of applications and CHIMPS and release of memory
used during the integrated simulation.

CHIMPS has been conceived to operate in a completely dynamic environment and therefore, steps 2
to 6 may be repeated multiple times in typical integrated simulations. For example, simulations that use
grids (possibly deforming) in relative motion may need to redefine these grids every time that the grid or
interpolation location information changes.

The application codes are both providers and receivers of information. The transfer of information is
accomplished through the driver script and, for that reason, the engineer / scientist writing the script must
be able to get / set data from/to the participating solvers. CHIMPS imposes no restrictions on the form or
structure of this interaction; it can happen through file I/O, by direct argument passing through a series of
helper functions/subroutines or through a thin layer that interfaces the application codes with a scripting
language such as Python, for example. In our work, the application codes have well-defined APIs (the
second type of interaction mentioned above) and, therefore, the driver program consists of a series of API
calls (to the application codes and to CHIMPS) that orchestrate the entire integrated simulations. Detailed
examples of such driver programs are provided in Section V. A number of other examples are provided with
the CHIMPS distribution.

It is important that the CHIMPS functionality be accessed from a well-defined, stable, and logical API
so that codes that use CHIMPS can benefit from future improvements to the search, interpolation, and
communication algorithms (“under the hood”) without the need to modify the driver programs. For this
reason, an initial version of the CHIMPS API was set up in 2004.? During the first three months of 2006, the
CHIMPS task force was setup and a complete re-definition of the API was tackled based on lessons learned
from the initial version and on a host of potential applications brought to the table by several developers
and users. The result is an API that is flexible and upgradable. Although additional functionality may be
included in the future, the existing API calls are not likely to be modified (except for the addition of a wider
variety of flags for the various routines).

The fundamental concept used by CHIMPS for the exchange of information between participating solvers
is that of an interface. An interface (in CHIMPS parlance) is the communication conduit between two
user-defined geometric entities that exchange information via interpolation. These geometric entities can
currently be either full unstructured meshes (structured and multi-block structured meshes can be provided to

4 of 28

American Institute of Aeronautics and Astronautics

CHIMPS by constructing an explicit connectivity) or list of points (to represent either interpolation locations
or, possibly, particle locations). The current mesh definition is through an unstructured mesh format that
supports the four basic three-dimensional elements primitives (tetrahedra, prisms, pyramids and hexahedra)
and is expected to support in the near future the two fundamental two-dimensional primitives (triangles and
quadrilaterals). Point lists are created with the Cartesian coordinates of the points themselves (internally
CHIMPS provides the capability to transform these point coordinates to a Cylindrical coordinate system
for purposes of interpolation). In CHIMPS, all geometric entities are assigned a name that acts as a handle
for any future operations. There is no limit on the number of geometric entities that can be handled by
CHIMPS.

After geometric entities are defined and named (see examples in Section V) they are grouped pairwise into
the interfaces. An interface may have any type of geometric entity on either side. The kind of interpolation
operation that will be performed across the interface is defined during the creation of the interface (using
a call to chimps setInterface) based on both the participating geometric entities and the interpolation
operation flag. For example, if on both sides of the interface we have a mesh and a point list, the logical
operations to be performed are either a failsafe search (the default) specified by the CHIMPS INTERPOLATE flag
to chimps setInterface (this is essentially a containment search followed by a minimum distance search for
those points that do not have a donor element, e.g. points that fall outside of all the elements in the mesh
provided to that interface) or a containment search specified by the CHIMPS INTERPOLATE CONTAINMENT flag
to chimps setInterface (where the donor elements for the specified points are found). If, instead, we had
two meshes on both sides of the interface then the logical interpolation operation may be a volume integration
of the overlapping meshes as specified by the CHIMPS INTEGRATE flag to the call to chimps setInterface.
For the time being, volume integrations (see Section E) are not supported in this fashion: they can only take
place between a point list (the source of information) and a mesh (the destination/receiver of information).

Once the interfaces are created, it remains to carry out the interpolations requested. This is done
through calls to chimps updateInterface which can update any or all the interfaces currently registered
into CHIMPS. Of course, prior to the actual interpolation and communication operations, CHIMPS must be
aware of the latest donor data from which the interpolated information will be obtained. CHIMPS is made
aware of this data by registering it with calls such as chimps setMeshData and chimps setPointData. The
chimps updateInterface call carries out all the necessary interpolations and communication. Once this
call has concluded, the interpolated data can be retrieved from the CHIMPS internal data structures via
calls to chimps getMeshData and chimps getPointData.

Some details associated with the implementation of these routines in the current CHIMPS library are
discussed in Section IV, including how processor groups and their associated communicators are built and
used, and which calls are globally collective vs. locally collective on one or a set of processor groups.

III. Technical Components

A. The parallel environment

CHIMPS assumes that the parallel environment is an MPI-based distributed-memory environment where
the total number of available processors are broken up into a set of disjoint groups where each group has a
unique user-specified name. A single group of processors can run one or more of the applications required
by the coupled simulation and the group name should reflect these associated applications for clarity in the
driver script.

The CHIMPS initialization routine chimps initialize is one of only a few globally blocking routines,
and must be called from all processors in the global communicator chimpsComm (typically MPI COMM WORLD).
chimps initialize splits the global communicator based on a case-sensitive comparison of the passed
group names, and ultimately returns these split communicators as group communicators for the subsequent
initialization of the participating applications. chimps initialize also builds a matrix of possible interface
communicators representing all possible unions of the groups. This particular choice is of course not scalable
in terms of the number of groups, Ng, however it is efficient for the relatively small numbers of groups
typically used, and allows the subsequent setting and updating of interfaces to be called by only those groups
participating in a particular interface. In the future, if CHIMPS is used to couple much larger numbers of
processor groups, some compile-time or run-time preprocessing of the driver script will be necessary to
determine the interface communicators actually required during the coupled simulation. Alternatively we
could have required the engineer/scientist writing the driver script to specify all interface pairings a priori as

5 of 28

American Institute of Aeronautics and Astronautics

part of the initialization routine, in an input file for example. However, to keep the API as clean as possible,
to avoid forcing the user to specify the same information more than once, and to keep the driver scripts as
readable and self-explanatory as possible, this was not done.

The routines that register geometries and their associated data with CHIMPS (e.g. setMeshGeom,
setMeshData, etc.) must be called collectively from only the processors in the group that owns the
geometry. At present, these routines actually create a copy of that information in memory managed by
CHIMPS. There is of course a memory overhead associated with this copy, however the choice to make a
copy in a form suitable for CHIMPS means that we impose no restrictions or requirements on the data
structures associated with the applications themselves. The only requirement is that they conform to the
CHIMPS API in providing their mesh and data.

The interface routines must be called collectively from all processor groups participating in the interfaces
being created or updated. In addition, the updateInterface command takes an array of interface names
to allow the CHIMPS implementation to optimize the required communication when multiple, independent
interfaces are updated at the same time (as is often the case, at the end of a global time step for example).

B. The search algorithm

Geometric searches are an important part of CHIMPS as data must be interpolated on several grids. More-
over, due to relative motion of the different parts, it is possible that these interpolations must be repeated
every time step in an unsteady simulation. Hence an efficient search algorithm, whose local memory usage
is limited, is a prerequisite. The reason for this attention to the memory requirement is that the total
amount of memory available on modern MPP’s is very large, but that is often caused by the large number
of processors (O(10, 000)); on a per processor basis and in extreme cases, only 256 MBytes may be available
(as in the DoE Lawrence Livermore BlueGene/L computer).

For these reasons, searches are performed in a memory-scalable way on the processors containing the
source geometry (e.g. the mesh) using a parallel binary tree structure called a parallel Alternating Digital
Tree (ADT).2 We note that this approach will only be scalable in terms of computation time when the
requests are distributed more-or-less evenly over the source processors. For cases where all the points being
requested are contained on only one or a small subset of the source processors, this approach is clearly
not scalable and better alternatives exist that distribute the computational work more evenly amongst the
participating processors; see for example the “rendezvous” approach described in Plimpton et al.,1 where
both source mesh and destination points are migrated to a new partition where the actual interpolation
is performed. While the current implementation of CHIMPS does not use such an algorithm, the API is
specifically designed such that it does not preclude the use of these more formally scalable approaches in the
future.

The parallel ADT algorithm proceeds as follows. First the bounding boxes of the elements of the local
grid are created. These bounding boxes are characterized by the lower left and the upper right coordinate
and are therefore equivalent to a point in 6 space dimensions. Every processor creates a local 6-dimensional
ADT of the bounding boxes (see figure 2). Logical rather than geometric splits are used to avoid degenerate
trees. The root leaves of the local trees are made available to all processors, see figure 3, such that the
geometric range covered by each local tree is known on every processor. Hence possible target trees can be

Figure 2. Building of the local ADT. Logical rather than geometrical splits are used to avoid degenerate trees.
Figure taken from.2

6 of 28

American Institute of Aeronautics and Astronautics

Figure 3. Gathering of the root leaves on all processors.

determined for every point to be searched.
The global algorithm proceeds as follows:

• Determine for every point to be searched the target trees and determine the number of local trees to
be searched for the current set of points.

• Make this number available to all processors =⇒ Every processor can determine the total number of
points it has to search in the local tree.

• Determine the number of search rounds to avoid a possible memory bottleneck.

• Determine the sending and receiving processors for every search round.

• Loop over the search rounds

– MPI Alltoall to request data from processors.

– Send coordinates to be searched to the target processors.

– Perform the interpolation in the local tree to overlap between communication and computation.

– Loop over the number of processors for which I need to interpolate data in my local tree

• Receive the coordinates.
• Interpolate the data in my local tree.
• Send interpolation data back to the requesting processor.

– Loop over the number of processors to which I sent coordinates.

• Receive the interpolation data.

The local search algorithm consists of a standard tree traversal, which leads to limited number of possible
target elements. A simple linear search is then performed to find the element, which either contains the point
to be searched or minimizes the distance to this point. For the actual interpolation the standard (tri-)linear
interpolation formula using finite element base functions3 are used.

C. Interface Coupling Numerical Issues

Although the stability and accuracy of integrated numerical simulations is currently left up to the user, our
group has been conducting research into numerical coupling techniques that can guarantee these properties.
As an example we consider the case of coupling two solution domains with a vortex convecting across the
interface.

We evaluate and compare two different approaches to couple two computational domains. The first
technique is an overlap technique, where we make use of ghost cells in the overlap region in combination
with linear interpolation (the current practice using CHIMPS). The second is a non-overlap technique that

7 of 28

American Institute of Aeronautics and Astronautics

uses Summation By Parts (SBP) operators (see for example4) in combination with the Simultaneous Ap-
proximation Term (SAT) technique 5 to impose the interface conditions. The non-overlap technique can be
proven stable and accurate in the case of matching grid lines, but here we use linear interpolation to transfer
the solutions along the line defining the common interface. In this test we use standard second-order finite
difference schemes to discretize space and use the standard fourth-order accurate Runge-Kutta method for
time integration.

We will compare the two methods for the 2-D compressible Euler equations on a 2-block domain. To
evaluate accuracy and stability, we use an exact analytic solution describing an isentropic vortex (see for
example6) as initial and boundary data. We run the vortex at Mach number 0.3 which means that we
have both right- and left-going charecteristics. The computational grid and the initial solution are shown in
Figure 4. The SAT method is remarkably robust and second-order accurate (design order). See Table 2 for
more details. The corresponding convergence study for the overlap technique is found in Table 1 showing
first-order accuracy. In these tables, N represents the number of points along the interface in the coarse side
of the mesh, ρ, u, v, and e correspond to the fluid density, Cartesian velocity components and internal energy,
and q() indicates the order of accuracy obtained for each of the variables (this is more significant in the limit
of a very fine mesh). By performing a long time integration we conclude that both methods are stable, but
the non-overlap SAT technique is more accurate and certainly cheaper, since we only have to do interpolation
along the interface mesh points. It must be understood that the two schemes differ only at the grid-points
along the interface (at x=5 in Fig. 4). From this simple example we understand that merely providing
linear interpolation capabilities is only a necessary condition to create high-fidelity integrated simulations:
a significant amount of work must be done in both the driver program and the component applications /
codes themselves in order to guarantee the accuracy of the resulting integrated simulation.

!5 0 5 10 15
!5

0

5
Analytic Euler vortex (denstity), non!matching gridlines, non!overlap

x

y

Figure 4. The Euler vortex problem for a SAT non-matching grid interface

D. Cartesian vs. Cylindrical coordinates

In theory, the current CHIMPS implementation can support the exchange of information between geometries
described in any consistent orthogonal basis. Care must be taken, however, for cases where the mapping
to physical space is not single-valued, such as cylindrical coordinates near the planes θ = 0, 2π. Addition-
ally, problems arise when vector data crosses periodic planes in a participating application and must be
transformed appropriately. For example, the case of vector data with cylindrical periodicity arises in the
annular simulations of turbomachinery components described below. To handle these and other cases, ad-
ditional parameters can be specified after geometries are registered with CHIMPS using the setMeshParam
and setPointParam routines. Some examples of their use are provided below.

8 of 28

American Institute of Aeronautics and Astronautics

N l2(ρ) q(ρ) l2(u) q(u) l2(v) q(v) l2(e) q(e)
41 -5.36 -4.29 -4.22 -3.90
61 -5.59 1.30 -4.51 1.30 -4.53 1.76 -4.13 1.30
81 -5.74 1.25 -4.67 1.22 -4.73 1.65 -4.28 1.22
101 -5.86 1.22 -4.78 1.18 -4.88 1.55 -4.40 1.20
121 -5.96 1.19 -4.87 1.15 -5.00 1.46 -4.49 1.17
141 -6.04 1.17 -4.95 1.13 -5.09 1.39 -4.56 1.15

Table 1. log(l2 − error) and convergence, 2nd order case. Interface coupling for analytic Euler vortex. Over-
lapping technique on coarse to fine grid.

N l2(ρ) q(ρ) l2(u) q(u) l2(v) q(v) l2(e) q(e)
41 -5.50 -4.30 -4.14 -3.96
61 -5.84 1.88 -4.64 1.90 -4.48 1.94 -4.29 1.89
81 -6.07 1.89 -4.88 1.93 -4.72 1.95 -4.53 1.91
101 -6.26 1.91 -5.07 1.94 -4.91 1.96 -4.72 1.93
121 -6.41 1.93 -5.22 1.95 -5.07 1.95 -4.87 1.94
141 -6.54 1.94 -5.35 1.96 -5.20 1.96 -5.01 1.95

Table 2. log(l2 − error) and convergence, 2nd order case. Interface coupling for analytic Euler vortex. Penalty
SAT technique on coarse to fine grid.

E. Interpolation vs. Integration in CHIMPS

Volume integration interfaces play an important role in finite volume solvers. By definition, a stored quantity
φi in a finite volume code represents a control-volume averaged quantity,

φi =
∫

Vi

φdx/Vi , (1)

with Vi the cell control volume. This implies that if two codes are to be coupled that employ overlapping or
intersecting grids, Eq. 1 must be solved to determine φi. For simplicity, it will be assumed in the following
that two codes, code A and code B, are to be coupled, with code B consisting of a fine mesh (blue) that
overlays parts of a code A coarse mesh (red), see left part of Fig. 5.

Let i be the code A cell in the lower right corner of Fig. 5. To calculate φi from code B data φj exactly,
CHIMPS has to first identify all cells G of code B, that have any common volume with Vi (large green dots
in center of Fig. 5), calculate the common volume Vi,j = Vi ⊂ Vj (shaded blue areas in center of Fig. 5),

Figure 5. CHIMPS volume integration code B (blue grid) to code A (red grid), exact integration (center),
approximate integration (right).

9 of 28

American Institute of Aeronautics and Astronautics

and then solve
φi =

∑
j∈G

φjVi,j/Vi . (2)

This exact formulation will be implemented in a future version of CHIMPS. The current version employs
a simpler, faster, approximate scheme that reverts back to the exact formulation in the case of exactly
overlapping grids, i.e. Vi,j = Vj or Vi,j = 0. The right side of Fig. 5 shows the more general case of not
exactly overlapping grids. In a first step, CHIMPS identifies all code B control volume centroids F that are
within Vj (large green dots in right of Fig. 5) and then solves

φi =
∑
j∈F

φjVj/
∑
j∈F

Vj . (3)

To utilize the integration interface in a driver program, the mesh of code A has to be registered as a
mesh entity and the cell centroids of code B have to be registered as a point entity. Furthermore, code B
has to provide the cell control volumes Vj in the codeB getPointData call. These then have to passed to
CHIMPS in the chimps setPointData with the variable name CELL VOLUME. An example implementation
of an integration interface in a driver program is listed in Appendix B.

The actual implementation of an integration interface in CHIMPS consists of the following steps:

1. generate ADT for code A’s mesh

2. send code B’s centroid coordinates xj to code A’s processors in a balanced way

3. find code A’s mesh element e(xj) that contains xj

4. send element information e(xj) back to code B’s processor that contains xj

5. build list of unique code A elements e′(xj) on each code B processor

6. build communication structure for e′(xj)

7. on code B’s processors calculate φe′(xj) =
∑

j∈e′(xj)
φjVj and Ve′(xj) =

∑
j∈e′(xj)

Vj

8. send φe′(xj) and Ve′(xj) to code A processor containing e′(xj)

9. on code A processors calculate φi =
∑

np codeB φe′(xj)/
∑

np codeB /Ve′(xj)

Note, that step 1 can be skipped if code’s A mesh has not changed, and steps 2-6 can be skipped, if
neither code A’s nor code B’s mesh has changed. Furthermore, the ADT build in step 1 is actually the same
as for an interpolation interface from code A to code B. Thus, in the common case that code B requests
interpolated data from code A, and code A requests integrated data from code B, the ADT needs to be build
only once, thereby reducing computational time, see also Sec. B.

The above algorithm ensures memory scalability even in the extreme case that all code B centroids are
within a single code A mesh element. Also, the dual-step integration, first on code B’s processors in step 7
and then on code A’s processors in step 9 ensures that actual parallel communication is kept to a minimum,
thereby ensuring excellent scalability.

IV. Software Verification

A. Analytical tests

The search and interpolation routines implemented in CHIMPS have been verified for all supported element
types using analytic linear and non-linear functions (see figure 6). These tests confirm that the interpolations
are linearly exact and second-order.

10 of 28

American Institute of Aeronautics and Astronautics

B. Scalability

One of the crucial features of the CHIMPS library is its ability to scale up well even on massively parallel,
distributed memory computer systems. In order to quantify the scalability, a simple interpolation coupling
of two codes, code A and code B is performed, see Appendix A. Both codes exist on the same group of
processors. In code A, N hexahedral elements are defined in a unit cube, from which code B requests two
interpolated scalar values at M randomly distributed points inside the unit cube. Both codes are themselves
perfectly load-balanced.

Figure 7 shows the speed-up as a function of the number of processors for the first updateInterface
and any subsequent updateInterface call. Note that for the first updateInterface call the ADT and
communicators are build, the data is exchanged and the interpolation is performed, whereas for any subse-
quent updateInterface call, only the latter two steps have to be performed. To obtain a meaningful scaling
relation, the problem size, that is N and M , is increased once the speed-up drops off due to an insufficient
number of elements/points per processor. To insure compatibility, the speed-up of the larger problem is then
scaled to the obtained speed-up of the smaller problem at the previous number of processors.

The observed speed-up for the initial updateInterface is slightly hyper-linear. This is due to the
fact that the ADT build and search scales hyper-linearly due to the smaller tree sizes being built in each
processor. The subsequent calls to updateInterface also show excellent scalability, with a noticeable drop-
off in speed-up once the problem size becomes too small. However, in practical applications this drop-off is
not significant, since in terms of wall-clock time, the subsequent calls to updateInterface are significantly
faster than the initial call. For example, in the N = 536.9 · 106 and M = 134.2 · 106 case on 256 processors
the wall-clock execution time for the initial call to updateInterface is 50.5s compared to 1.9s for any one
of the subsequent calls.

V. APPLICATIONS

This section is meant to showcase a number of integrated simulations of increasing complexity that our
group is carrying out with the help of CHIMPS. We start with a simple, static, three-code computation of
the flow in an annular pipe. We then present a dynamic test case where two separate solvers are coupled
to solve the flow around a pitching airfoil. The use of CHIMPS in this example occurs in the inner loop
of the computation as the relative positions of the meshes change on every time step. We conclude this
section with a brief description of our integration efforts in two major research programs: the DoE ASC
program where we are trying to carry out computations of the flow through entire jet engines, and the
DARPA Helicopter Quieting program where two solvers are being coupled to simulate the flow physics and

dx

er
ro
r

10-3 10-2 10-1 100

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

tet
pyra
prism
hex

slope 2

dx

er
ro
r

10-3 10-2 10-1 100

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

tet
pyra
prism
hex

slope 2

Figure 6. Verification of interpolation error for a linear function (left), where interpolations are exact, and
for a non-linear function f = sin(x)sin(y)sin(z) (right), where convergence is second-order for all element types.
The significantly lower error coefficient associated with hex elements is an artifact of this particular analytic
function, and not a general property of the hex interpolation.

11 of 28

American Institute of Aeronautics and Astronautics

acoustic noise generation on advanced helicopter rotor configurations. All of these examples use CHIMPS
to exchange information between solvers.

A. Annular pipe test case

A simple test case that mimics the geometrical features of the jet-engine environment (compressible–
incompressible coupling, rotational periodicity, swirling velocity) and which consists of three overlapping
annular 90 degree pipe sectors has been used to validate CHIMPS. Two annular pipe sectors were computed
with the compressible solver, SUmb (formerly known as TFLO; Yao et al. 2001; Kalitzin 2000) and the
remaining one with the incompressible solver, CDP (Mahesh et al. 2004). Reynolds number for this flow
was chosen as Re = uBDh/ν = 500, with uB , Dh = (Dinner + Douter)/2 and ν are bulk velocity, hydraulic
diameter and kinematic viscosity, respectively. Mach number was chosen as M = uB/a = 0.3. For the
case with swirling velocity, its magnitude corresponded to 10% of the streamwise velocity component. The
schematic of the computational domain for this coupled simulation is shown in Figure 8. The interface
conditions used for this computation are depicted in Figure 9. Contrary to boundary conditions, the most
ideal treatment of interface conditions would be to mimic the inter-block communications in the classical
domain decomposition. In case of coupling between two compressible solvers, it means that all dependent
variables at an interface should be exchanged at every inner iteration. However, the present test involves
compressible–incompressible coupling and the following interface conditions had to be used at the beginning
of every unsteady time step. SUmb1 provides CDP with the velocities u, v and w and SUmb2 provides CDP
with the pressure (which is used to set the proper pressure level within CDP). CDP provides all the necessary
variables for a subsonic inflow for SUmb2 (total pressure, pt, total temperature, Tt, and the velocity angles,
αi). Note, that the density in CDP is set to a constant value.

Figures 10–11 show contours of streamwise velocity and the swirl velocity vectors at both SUmb1/CDP
and CDP/SUmb2 interfaces. SUmb and CDP solutions agree very well in the overlap region.

B. Dynamic stall around a 2D airfoil

In order to validate the performance of CHIMPS in a more general moving-mesh situation, it has been applied
to a coupled two-dimensional RANS simulation of dynamic stall using SUmb and CDP. The Reynolds and
Mach numbers chosen are Re = u∞c/ν∞ = 106 and M = u∞/a∞ = 0.3, where u∞, ν∞ and a∞ are velocity,
kinematic viscosity and speed of sound at the free stream, and c is the chord length. A NACA0012 airfoil

1

10

100

1000

1 10 100 1000
processors

1

10

100

1000

1 10 100 1000
processors

Figure 7. CHIMPS scalability for initial updateInterface call (left) and subsequent updateInterface calls (right)
with N = 16.8·106 and M = 4.2·106 (red circles), N = 134.2·106 and M = 33.6·106 (green squares), and N = 536.9·106

and M = 134.2 · 106 (blue triangles).

12 of 28

American Institute of Aeronautics and Astronautics

Figure 8. Schematic of the computational domain for a coupled simulation of three pipes, side view (left) and
top view(right).

Figure 9. Interface conditions for a coupled simulation of three pipes.

is pitching about the quarter chord and the pitching condition is α(t) = α0 + ∆α sin(ωt), α0 = 15.2◦,
∆α = 4.2◦, β = ωc/2u∞ = 0.5, where α(t) is the angle of attack, ω is the pitching frequency, and β is the
reduced frequency.

Figure 12 shows a schematic diagram of the computational domain. The inner near-blade region is solved
by the fully compressible SUmb, while the outer domain is covered by the incompressible CDP. The inner
SUmb domain has an elliptic shape with −1.1 / x/c / 1.6 and −1.2 / y/c / 1.2 (with the origin at the
quarter chord), while the outer CDP domain has a square shape with a rectangular inner hole. Coordinates
for the CDP inner hole and outer boundaries are x/c = −0.5, 1.25, y/c = ±0.5 and x/c = y/c = ±15,
respectively. Note that there is an overlap region between the two domains, where the two solutions should
be close to each other within the accuracy order of discretization and coupling schemes. The SUmb domain
is pitching with the airfoil, whereas the CDP domain remains stationary in time. Therefore, the geometric
information should be exchanged at every time step for this problem. For both solvers, v2–f turbulence
model (Durbin 1991, 1995) is used for turbulence closure. Both solvers are initialized with the uniform free
stream at t = 0 and the size of computational time step is ∆tu∞/c = π/600, which corresponds to 1200 time
steps per pitching period and leads to CFL = |u|∆t/∆x = 1 ∼ 1.5.

Along with the coupled simulation, we have additionally conducted two single-SUmb simulations with a
large and a small computational domain, which will be denoted by LD and SD respectively, for the purpose
of comparison. The LD case has a large circular computational domain (−15 / x/c, y/c / 15) with the
usual far-field boundary condition applied at the outer boundary, while the grid resolution is maintained
almost identical to that of the coupled simulation. On the other hand, the SD case uses exactly the same
SUmb grids that are used for the coupled case (see figures 14–16). The only difference between SD and
coupled cases is that the former imposes the far-field boundary condition on the outer boundary, while the
latter uses the data transferred from CDP. Since both the domain size and grid resolution for the LD case

13 of 28

American Institute of Aeronautics and Astronautics

Figure 10. Contours of streamwise velocity at SUmb1/CDP (right) and CDP/SUmb2 (left) interfaces.

Figure 11. Contours of swirl velocity at SUmb1/CDP (right) and CDP/SUmb2 (left) interfaces.

are comparable to those for the coupled simulation, it is again expected that the two results should be close
to each other within the accuracy order of discretization and coupling schemes used, as will be shown below.

As described in the previous section, the compressible–incompressible coupling for the present test has two
main limitations. One stems from the fact that the incompressible solver cannot provide the thermodynamic
pressure (or total energy, equivalently) required for the compressible one. The other is that SUmb and

14 of 28

American Institute of Aeronautics and Astronautics

CDP use different classes of inner-iteration schemes (multigrids combined with the dual time stepping for
SUmb, whereas Poisson system combined with the fractional-step method for CDP), which makes it difficult
to exchange data at every inner iteration. Therefore, we introduced the following approximations to the
present coupled simulation:

x/c

y/
c

-15 -10 -5 0 5 10 15-15

-10

-5

0

5

10

15 Outer domain (stationary) - CDP

Inner domain (pitching) - SUmb

Inner hole of
the CDP domain

Airfoil

Figure 12. Schematic of the computational domain for coupled simulation of dynamic stall.

tu!/c

C
L,
C
D
,C

M

0 5 10 15

0

0.5

1

1.5

2

Figure 13. Time histories of lift, drag and moment coefficients. Red, blue, and black lines denote coupled,
LD, and SD cases, respectively.

15 of 28

American Institute of Aeronautics and Astronautics

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 14. Contours of streamwise velocity at t = 3T for coupled (left), LD (middle) and SD (right) cases.
Red and blue lines are for SUmb and CDP contours, respectively. Denoted by black lines are the interfaces
or domain boundaries.

(1) At interfaces, data are exchanged at the beginning of every unsteady time step and they are fixed during
the inner iteration process of each solver.
(2) SUmb provides all the necessary dependent variables for CDP (i.e. u, v, w, k, ε, v2 and f) via CHIMPS.
Except the thermodynamic pressure, CDP also provides all the necessary dependent variables for SUmb (i.e.
ρ, u, v, w, k, ε, v2 and f) through CHIMPS. Meanwhile, SUmb extrapolates the thermodynamic pressure
using one-dimensional Riemann invariant, instead of acquiring it from CHIMPS.

Note that CDP provides a constant free-stream density for the SUmb interface, which can be justified
by the relatively low Mach number of the present case. Indeed, results of the LD case showed that the
density variation is mostly within 1% of the free-stream value along the SUmb interface. Even the passage of
shed vortices causes a density variation only less than 6% behind the trailing edge. The approximation (1)
leads to a formally first-order accuracy in time. In the present test, this degradation in temporal accuracy
is complemented by using a sufficiently small time step. Loss of temporal accuracy can be also avoided
by introducing carefully designed subiterations that are performed between each pair of consecutive time
stations, such as shown in Felippa et al. (2001).

Figure 13 shows time histories of lift, drag and moment coefficients for coupled, LD and SD cases.
Contrary to single-SUmb cases, the coupled simulation initially shows spurious oscillations, which indicates
that a certain amount of time should be passed for the two solutions in the overlap region to be fully adjusted
to each other. The spurious oscillations result from artificial reflections occurring at the SUmb interface, since
the interface condition (2) acts like an over-specified far-field boundary condition until the CDP solution is
wholly modified from the initial uniform flow and fully adapted to the unsteadiness. As is expected, however,
all the force and moment coefficients from LD and coupled cases show an excellent agreement with each other
with a sufficient lapse of time (t ' T/2, where T is the pitching period). Note that the oscillatory initial
transients can be evaded by using a face-to-face matching interface or a body-force-based volume coupling,
which are currently under investigation. On the other hand, the SD case yields quite an erroneous airload
prediction due to the insufficient domain size, which confirms that the present coupling plays a significant
role in maintaining overall accuracy.

Figures 14–16 show contours of streamwise velocity (u), turbulent kinetic energy (k) and dissipation (ε)
at t = 3T . As is expected, the coupled simulation shows mean-flow and turbulence evolutions very similar
to those of the LD case. Furthermore, for the coupled simulation, it is also confirmed that SUmb and CDP
solutions agree very well in the overlap region. However, the SD case exhibits a much thinner wake and a
significantly incorrect flow development, which is consistent with the poor airload prediction shown in figure
13.

C. Full engine simulations in the DoE ASC program

Today’s use of Computational Fluid Dynamics (CFD) in gas turbine design is usually limited to component
simulations. The demand on the models to represent the large variety of physical phenomena encountered in
the flow path of a gas turbine, mandates the use of a specialized and optimized approach for each component.
The flow field in the turbomachinery portions of the domain is characterized by both high Reynolds-numbers

16 of 28

American Institute of Aeronautics and Astronautics

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 15. Contours of turbulent kinetic energy at t = 3T for coupled (left), LD (middle) and SD (right) cases.
Red and blue lines are for SUmb and CDP contours, respectively. Denoted by black lines are the interfaces
or domain boundaries.

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x/c

y/
c

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 16. Contours of turbulent dissipation rate at t = 3T for coupled (left), LD (middle) and SD (right)
cases. Red and blue lines are for SUmb and CDP contours, respectively. Denoted by black lines are the
interfaces or domain boundaries.

and high Mach-numbers. The accurate prediction of the flow requires the precise description of the turbulent
boundary layers around the rotor and stator blades, including tip gaps and leakage flows. The flow solvers
are typically based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Here, the unsteady flow field
is ensemble-averaged removing all dependence on the details of the small scale turbulence. A turbulence
model becomes necessary to represent the portion of the physical stresses that has been removed during
the averaging process. The flow in the combustor, on the other hand, is characterized by detached flows,
chemical reactions and heat release. The prediction of detached flows and free turbulence is greatly improved
using flow solvers based on Large-Eddy Simulations (LES). While the use of LES increases the computational
cost, LES has been the only predictive tool able to simulate consistently these complex flows. LES resolves
the large scale turbulent motions in time and space, and only the influence of the smallest scales, which
are usually more universal and hence, easier to represent, has to be modeled. Since the energy containing
part of the turbulent scales is resolved, a more accurate description of scalar mixing is achieved, leading to
improved predictions of the combustion process.

Here, we present the results of an integrated multi-component simulation of a Pratt & Whitney aircraft
engine presented in Figure 17. This simulation simultaneously computes the flow in the fan/compressor
(SUmb), the combustor (CDP) and the turbine (SUmb), and each of the components exchanges flow data
with its neighbors. The goal of this simulation is to demonstrate the ability to perform complex multi-
physics multi-code simulations on a real world problem. The domain consists of a 20 degree sector of all
the components; in view of the full engine simulation, this is the smallest sector that can be chosen, since
it contains one fuel injector. The initial solution for the integrated simulation is provided by a combination
of the component simulations. The operating conditions for the engine corresponds to cruise conditions.
For the compressor (or the fan when the entire engine is computed), the boundary conditions have to be
specified at the inlet. Here, total temperature, total pressure and the flow directions are imposed. At the

17 of 28

American Institute of Aeronautics and Astronautics

Figure 17. Decomposition of engine components for the coupled simulation.

outlet of the compressor, the static pressure is imposed as an interface condition (which can also be are
provided by the downstream flow solver that is computing the combustor). The combustor receives at the
inlet the mean flow velocities [ū, v̄, w̄] from the compressor. Additional fluctuations [u′, v′, w′] generated in
an auxiliary annular duct computation are then added to these mean velocities from SUmb. The fuel mass
flow rate is defined as a boundary condition corresponds to the cruise operating conditions. The actual outlet
of the combustor domain is far downstream in order to minimize the effect of the domain boundary and the
convective outflow condition. The turbine receives at its inlet the total pressure, the total temperature and
the flow directions from the combustor; the quantities that are transfered are time-averaged on the fly as the
computation proceeds. At the outlet of the turbine, we specify the static pressure as a boundary condition.

The communication between the components is handled by CHIMPS. Since the turbomachinery meshes
of each sector may not necessarily coincide with the sector mesh of the neighboring domain, the interface
donor cells must be searched over the entire circumference of the engine. A fast search method has been
developed to minimize the time spent on the sector searches. Vector components of exchanged flow variables
are automatically rotated depending of the azimuthal offset of the neighboring domains.

We have performed two sets of integrated simulations for the 20o sector. The first one concentrated on
the high-pressure spool and included the high pressure compressor, the combustor and the turbine. In the
second computation, we have also included the fan and the low pressure compressor (the remaining stages of
the low pressure turbine and the exit nozzle are currently being added to the computational domain). In both
computations, we considered two sets of grids for the compressor: a finer grid consisting of approximately
57 million cells for the entire fan/compressor ensemble and a coarser grid consisting of approximately 8
million cells. The combustor grid contains 3 million cells and the turbine grid consists of approximately 5
million cells. The time-step has been chosen to enure that in the turbomachinery components we use at

18 of 28

American Institute of Aeronautics and Astronautics

least 50 time-steps for a blade passing in a blade row with the highest count and the highest rotational
speed. This translates into about 6,300 time-steps needed for a full wheel revolution of the slower low
pressure components and 2,700 time steps for the faster rotating high pressure components. In addition,
estimates for the number of time-steps needed for a flow-through time range from 10,000 time steps for the
high-pressure spool, to about 20,000 for the entire engine.

We have performed multiple simulations on a Xeon Linux cluster at the US Department for Energy. The
simulations typically run for 2000 time-steps in 24 hours of wall clock-time on 700 processors, for the entire
engine on the coarser grid for the compressor; the fan/compressor was run on 380 processors, the combustor
on 80 processors and the turbine on 240 processors. To obtain the same amount of time-steps for the entire
engine on the finer grid, approximately 3,500 processors would be needed. For the high-pressure spool, the
computations with the coarser grid require only 400 processors, whereas the computations that employ the
finer grid for the HPC require about 1200 processors. We estimate that a flow-through time of an entire
high-spool of the engine can be computed within 5 days of uninterrupted running.

Our preliminary analysis of the results obtained so far (6,000 time-steps for the high pressure spool and
2,000 time-steps for the entire engine) has focused on the solution in the vicinity of the component interfaces.
The axial velocity contours at the compressor/combustor interface plotted in the mid-passage radial plane
are shown in Figure 18. The wakes from the last row of vanes in the high pressure compressor are propagating
through the interface into the diffuser. Figure 19 presents the axial velocity and temperature contours for
the combustor/turbine interface plotted for the mid-passage radial plane. Note that the time-averages of the
flow variables from the combustor computation are passed to the turbine (total pressure, total temperature
and flow angles). Interestingly, at the turbine inflow we have observed a strong variation of temperature and
axial velocity in the circumferential direction.

D. Helicopter rotor simulations in the DARPA Helicopter Quieting program

The objective of Phase I of the DARPA Helicopter Quieting program (HQP) is to develop advanced sim-
ulation tools to accurately predict the performance and acoustic signature of helicopter rotors in forward
flight. Our approach to the solution of this problem has been to adopt a two-flow-solver strategy to predict
the flow features (transonic flows, dynamic stall, vortical wake, etc.). These two flow solvers (SUmb and
CDP) are coupled to each other and to the University of Maryland’s UMAC and UMARC packages for
the prediction of the radiated noise field (UMAC), and for both the aeroelastic blade deflections and trim
state of the helicopter rotor (UMARC). CHIMPS plays a key role in these interfaces between solvers as it is
responsible for the exchange of information between SUmb and CDP, as well as the information extraction
for the acoustic propagation module in our environment.

Figure 20 below shows a schematic view of the simulation environment and all of its components (including
Large Eddy Simulations that are not discussed here) with CHIMPS at its center acting as an information
broker for the various modules. Note that in this program, we have chosen to drive all modules (and
CHIMPS) through high-level scripts in the Python scripting language that has been mentioned earlier in
this paper: CHIMPS can be linked into a single executable (and used as a library) or it can be used as a
runtime module that is imported and called from a Python driver script. Figure 21 below shows more details
of the mesh geometries that the SUmb and CDP solvers use. Holes are cut into the CDP background mesh
(red) and all interpolations are carried out through CHIMPS.

VI. Conclusions & Future Work

In this paper we have presented a description of the CHIMPS module/library for coupling of multiple
parallel solvers into a single integrated simulation. As it stands, CHIMPS provides a fully parallel and
scalable search and interpolation capability that can be used in multiple applications. Moreover, CHIMPS
includes a first version of a volume integration capability for conservative interpolation of certain quantities.
CHIMPS can be accessed as a library from a high-level language (Fortran 90/95 or C/C++) or as a module
in the Python scripting language. The intent of the CHIMPS team is to provide this basic functionality to
the community as an Open Source project and to enhance the current capabilities to include conservative
interpolation, support for overset mesh computations (including hole cutting), and support for fluid-structure
interfaces. We welcome the use of CHIMPS by members of the community and we look forward to their
contributions to a constantly-improving CHIMPS library/module.

19 of 28

American Institute of Aeronautics and Astronautics

Figure 18. Compressor/combustor interface. Axial velocity, mid-passage.

Figure 19. Combustor/turbine interface. Axial velocity (left) and temperature (right) contours, mid-passage.

VII. Acknowledgments

The majority of the work in the development of the CHIMPS module has been supported by the U.S.
Department of Energy ASC program under contract number LLNL B341491 as part of the Advanced Simu-
lation and Computing Program (ASC). Significant contributions and motivation for the development of the
most recent version of CHIMPS have been provided by DARPA under the Helicopter Quieting program.
This part of the work is sponsored by DARPA under ARO Contract # W911NF-04-1-0424. Opinions, in-
terpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed
by the United States Government. In addition, the authors would like to acknowledge the contributions of
Dr. Jaynarayanan Sitaraman from the University of Maryland for his use of the CHIMPS environment and
his help in debugging the initial versions.

20 of 28

American Institute of Aeronautics and Astronautics

Figure 20. A schematic view of the HUSH (Hybrid Unsteady Simulations for Rotors) environment with the
various participating modules and CHIMPS.

VIII. References

References

1Plimpton, S. J., Hendrickson, B., and Stewart, J. R., “A parallel rendezvous algorithm for interpolation between multiple
grids,” J. Parallel Distrib. Comput., Vol. 64, 2004, pp. 266–276.

2Aftosmis, M., “Solution Adaptive Cartesian Grid Methids for Aerodynamic Flows with Complex Geometries,” VKI LS
1997-02, Computational Fluid Dynamics, 1997.

3Zienkiewicz, O. and Taylor, R., The Finite Element Method, Volume 1. Basic Formulation and Linear Problems, McGraw-
Hill Book Company Europe, 1997.

4Mattsson, K. and Nordström, J., “Summation by parts operators for finite difference approximations of second derivatives,”
J. Comput. Phys., Vol. 199(2), 2004.

5Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-stable boundary conditions for finite-difference schemes so lving
hyperbolic systems: Methodology and application to high-order compact s chemes,” J. Comput. Phys., Vol. 111(2), 1994.

6K.Mattsson, Svärd, M., and andJ. Nordström, M. C., “High-Order Accurate Computations for Unsteady Aerodynamics,”
to appear in Computers and Fluids, 2006.

IX. Appendices

Three separate appendices are included in this paper. These appendices show the detailed driver pro-
grams (written in Fortran 90/95) for different aspects of the current functionality of CHIMPS. These driver
programs are meant to serve as examples to understand the level of programming that is needed to make use
of the CHIMPS interface. In addition to these programs, the CHIMPS distribution contains a large number
of test programs that can also be used to understand the functionality of CHIMPS.

The three driver programs that are presented are:

1. A scalability driver program that was used to produce the scalability graphs in Section B.

2. A driver program for the existing integration capabilities in CHIMPS.

3. A driver program and an explanation for the pitching airfoil test case.

21 of 28

American Institute of Aeronautics and Astronautics

Figure 21. Mesh topologies used in the exchange of information between the SUmb and CDP solvers in the
HUSH environment. Holes are cut into the CDP mesh (red). The blades flap and distort within the SUmb
domain (green). CHIMPS determines all connectivity and passes information between solvers.

All codes are completely functional CHIMPS programs that can be compiled and run with the use of the
CHIMPS library and MPI where appropriate.

22 of 28

American Institute of Aeronautics and Astronautics

A. Scalability driver program
program ScalabilityDriver

use chimps_m

use codeA_m

use codeB_m

implicit none

include ’mpif.h’

character(len=32) :: groupName, varNames(2), interfaceNames(1)

integer :: ierr, myrank, nprocs, groupComm, myGroupRank, iter

integer(IP) :: nNodes, nTet, nPyra, nPrism, nHex, nPoints, nVars, nInterfaces

real(RP), allocatable, dimension(:,:) :: xyz, data

integer(IP), allocatable, dimension(:,:) :: tetConn, pyraConn, prismConn, hexaConn

! for timing

real(RP), dimension(2) :: ts,dt,dtmean

! Initialize mpi...

call mpi_init(ierr)

call MPI_comm_rank(MPI_COMM_WORLD, myrank, ierr)

call MPI_comm_size(MPI_COMM_WORLD, nprocs, ierr)

! timing

dt = 0.0_RP

! initialize chimps on all processors using the same group name.

groupName = ’CODEA_CODEB’

call chimps_initialize(groupComm,groupName,MPI_COMM_WORLD)

call chimps_setParam(’HIGH’,’VERBOSITY’)

call codeA_init(groupComm)

call codeB_init(groupComm)

call MPI_comm_rank(groupComm, myGroupRank, ierr)

! code A mesh registration

call codeA_getMeshSize(nNodes,nTet,nPyra,nPrism,nHex)

allocate(xyz(3,nNodes),tetConn(4,nTet),pyraConn(5,nPyra))

allocate(prismConn(6,nPrism),hexaConn(8,nHex))

call codeA_getMeshGeom(xyz,hexaConn)

call chimps_setMeshGeom(xyz,nNodes,tetConn,nTet,pyraConn, &

nPyra,prismConn,nPrism,hexaConn,nHex,"CODEA_MESH")

deallocate(xyz,tetConn,pyraConn,prismConn,hexaConn)

! code B point registration

call codeB_getPointSize(nPoints)

allocate(xyz(3,nPoints))

call codeB_getPointGeom(xyz)

call chimps_setPointGeom(xyz,nPoints,"CODEB_POINTS")

! register interpolation interface

call chimps_setInterface("MY_INTERFACE",CHIMPS_INTERPOLATE, &

"CODEA_MESH" , "CODEA_CODEB", & ! src

"CODEB_POINTS", "CODEA_CODEB") ! dest

! register requested variable names

varNames(1) = ’PHI’

varNames(2) = ’PSI’

nVars = 2

call chimps_setPointRequest(varNames,nVars,’CODEB_POINTS’)

! MAIN LOOP

do iter = 1,3

! register solution on mesh for code A

varNames(1) = ’PHI’

varNames(2) = ’PSI’

nVars = 2

allocate(data(nVars,nNodes))

call codeA_getMeshData(data)

call chimps_setMeshData(data,varNames,nVars,’CODEA_MESH’)

deallocate(data)

! timing main work

ts(1) = MPI_WTIME()

! perform interpolation

interfaceNames(1) = "MY_INTERFACE"

nInterfaces = 1

call chimps_updateInterface(interfaceNames,nInterfaces)

! timing main work

if (iter == 1) then

dt(1) = MPI_WTIME() - ts(1)

else

dt(2) = dt(2) + MPI_WTIME() - ts(1)

end if

! retrieve interpolated data

varNames(1) = ’PHI’

varNames(2) = ’PSI’

nVars = 2

allocate(data(nVars,nPoints))

call chimps_getPointData(data,varNames,nVars,’CODEB_POINTS’)

call codeB_setPointData(data,varNames,nVars,’CODEB_POINTS’)

deallocate (data)

end do

! output of timing information

call MPI_REDUCE(dt(1),dtMean(1),2,MPI_DOUBLE_PRECISION,MPI_SUM,0,MPI_COMM_WORLD,ierr)

if (myrank == 0) then

dtMean = dtMean/real(nprocs,RP)

dtMean(2) = dtMean(2)/2.0_RP

write (*,*) ’---’

write (*,*) ’ Timing results:’

write (*,’(a,3f12.5)’) ’ Chimps 1st updateInterface: ’,dtMean(1)

write (*,’(a,3f12.5)’) ’ Chimps 2-n avg updateInterface: ’,dtMean(2)

end if

call chimps_finalize()

call codeA_finalize()

call codeB_finalize()

call mpi_finalize(ierr)

end program ScalabilityDriver

23 of 28

American Institute of Aeronautics and Astronautics

B. Integration interface driver
program IntegrationDriver

use chimps_m

use codeA_m

use codeB_m

implicit none

include ’mpif.h’

character(len=32) :: groupName, varNames(3), interfaceNames(1)

integer :: ierr, myrank, nprocs, groupComm, myGroupRank, iter

integer(IP) :: nNodes, nTet, nPyra, nPrism, nHex, nPoints, nVars, nInterfaces

real(RP), allocatable, dimension(:,:) :: xyz, data

integer(IP), allocatable, dimension(:,:) :: tetConn, pyraConn, prismConn, hexaConn

! Initialize mpi...

call mpi_init(ierr)

call MPI_comm_rank(MPI_COMM_WORLD, myrank, ierr)

call MPI_comm_size(MPI_COMM_WORLD, nprocs, ierr)

! initialize chimps on all processors using the same group name.

groupName = ’CODEA_CODEB’

call chimps_initialize(groupComm,groupName,MPI_COMM_WORLD)

call chimps_setParam(’HIGH’,’VERBOSITY’)

call codeA_init(groupComm)

call codeB_init(groupComm)

call MPI_comm_rank(groupComm, myGroupRank, ierr)

! code A mesh registration

call codeA_getMeshSize(nNodes,nTet,nPyra,nPrism,nHex)

allocate(xyz(3,nNodes),tetConn(4,nTet),pyraConn(5,nPyra), &

prismConn(6,nPrism),hexaConn(8,nHex))

call codeA_getMeshGeom(xyz,hexaConn)

call chimps_setMeshGeom(xyz,nNodes,tetConn,nTet,pyraConn, &

nPyra,prismConn,nPrism,hexaConn,nHex,"CODEA_MESH")

deallocate(xyz,tetConn,pyraConn,prismConn,hexaConn)

! code B mesh regustration as point entity

call codeB_getPointSize(nPoints)

allocate(xyz(3,nPoints))

call codeB_getPointGeom(xyz)

call chimps_setPointGeom(xyz,nPoints,"CODEB_POINTS")

! register interpolation interface

call chimps_setInterface("MY_INTERFACE",CHIMPS_INTEGRATE, &

"CODEA_MESH" , "CODEA_CODEB", & ! dest

"CODEB_POINTS", "CODEA_CODEB") ! src

! register requested variable names

varNames(1) = ’PHI’

varNames(2) = ’PSI’

nVars = 2

call chimps_setPointRequest(varNames,nVars,’CODEA_MESH’)

! MAIN LOOP

do iter = 1,3

! register solution on points for code B

varNames(1) = ’PHI’

varNames(2) = ’PSI’

varNames(3) = ’CELL_VOLUME’

nVars = 3

allocate(data(nVars,nNodes))

call codeB_getPointData(data)

call chimps_setPointData(data,varNames,nVars,’CODEB_POINTS’)

deallocate(data)

! timing main work

ts(1) = MPI_WTIME()

! perform interpolation

interfaceNames(1) = "MY_INTERFACE"

nInterfaces = 1

call chimps_updateInterface(interfaceNames,nInterfaces)

! retrieve integrated data

varNames(1) = ’PHI’

varNames(2) = ’PSI’

nVars = 2

allocate(data(nVars,nPoints))

call chimps_getMeshData(data,varNames,nVars,’CODEA_MESH’)

call codeA_setPointData(data,varNames,nVars,’CODEA_MESH’)

deallocate (data)

end do

call chimps_finalize()

call codeA_finalize()

call codeB_finalize()

call mpi_finalize(ierr)

end program IntegrationDriver

C. Pitching Airfoil Test Case

1. Overall structure of a driver program

As described in Section II, the final executable to run
a multi-code integrated simulation is constructed by
writing and compiling a driver program, which is the
outermost layer that actually couples the entire set of

programs. All the solver and CHIMPS modules are
loaded and API routines are called in it.

Figure 22 shows the typical structure of a driver
program which would be common to most applica-
tions. The sequence of operations in a driver is as
follows:

1–2. As is common to all MPI applications, the
first step is the MPI initialization, which is followed
by the initialization of CHIMPS and each solver. Note
that, along with the global communicator for driver
and CHIMPS, a local communicator for each solver
should be also defined here. In CHIMPS, it is actu-
ally handled by chimps initialize which returns a
local communicator as an output, and hence it is not
necessary to call mpi comm split separately within
the driver.

3. After initialization, the first thing to do is to
transfer information on all the involved geometric ob-
jects (such as interface points or volume meshes) from
each solver and register them to CHIMPS, which is
done by calling solver getPoint(Mesh)Size, solver
getPoint(Mesh)Geom and chimps setPoint(Mesh)
Geom in this order.

4. Once all the points and volume meshes are
registered to CHIMPS, CHIMPS should construct in-
terfaces, which are the relationships between named
point and mesh objects, via chimps setInterface.

5. Now the list of flow variables requested by
each solver for its interfaces should be registered to
CHIMPS for later interpolations, which is done by
chimps setPointRequest. Note that CHIMPS uses
CGNS names to identify flow variables.

6. The list of all the relevant flow variables and ac-
tual solution data at the entire mesh points are trans-
ferred from each solver to CHIMPS by solver get
MeshData and chimps setMeshData. Here, it is users’
responsibility to guarantee that all the participating
solvers provide proper flow variables to CHIMPS in
order to prevent the interpolation failure.

7. Given all the transferred data and interfaces
constructed, CHIMPS performs searches and inter-
polations via chimps updateInterface.

8. With searches and interpolations completed,
the interpolated data are transferred from CHIMPS
back to each solver by chimps getPointData and sol
ver setPointData. Within each solver, these data
are employed as a boundary condition.

9. Given the interface data, each solver performs
a time marching.

10. If the final time step is reached, each solver
and CHIMPS are finalized. Otherwise, repeat 6–9

24 of 28

American Institute of Aeronautics and Astronautics

in case that all the relevant geometric objects are
stationary. If the problem involves moving grids in
time, repeat 3–9 to reflect changes in geometry at
every time step.

Although CHIMPS is entirely written in Fortran90,
a driver can be written in other programming lan-
guages in principle, more preferably in script lan-
guages like Python or Perl. Currently, CHIMPS sup-
ports both Fortran- and Python-based APIs. Note
that f2py (http://cens.ioc.ee/projects/f2py2e/) pro-
vides an efficient environment which enables all the
Fortran-based API routines accessible from Python
without any necessity of rewrite.

2. Example of a driver program

As an example, we provide an actual driver program
in this section, which was used for the coupled simu-
lation of dynamic stall, so that users can utilize it as
a template in writing their own ones. For this spe-
cific problem, the following names are prescribed to
identify geometric objects and interfaces:
(1) Names internally defined within each solver

- These internal names should be used as an argument of solver API
routines.

• SUmbRhouvwInterfaceFamily: Name for SUmb interface points used within
SUmb.

• SUmbAirfoil: Name for SUmb volume meshes (coordinates and connec-
tivity) used within SUmb.

• cdp_interface: Name for CDP interface points used within CDP.
• default-interior: Name for CDP volume meshes (coordinates and con-

nectivity) named within CDP.

(2) Names newly created during registration to CHIMPS
- These names should be used as an argument of CHIMPS API routines.
- Users can also register the same names as in (1) to prevent the confu-

sion.
• SUMB_POINTS: Name registered to CHIMPS for SUmb interface points.
• CDP_POINTS: Name registered to CHIMPS for CDP interface points.
• SUMB_MESH: Name registered to CHIMPS for SUmb volume meshes.
• CDP_MESH: Name registered to CHIMPS for CDP volume meshes.
• SUMB_INTERFACE: Name registered to CHIMPS for the interface where CDP

is the source and SUmb is the destination (i.e. outer boundary of the SUmb
domain).

• CDP_INTERFACE: Name registered to CHIMPS for the interface where SUmb
is the source and CDP is the destination (i.e. inner-hole boundary of the CDP
domain).

Also note that the assignment of constant free-stream density is manipu-
lated within the driver program, instead of directly transferring it from CDP
via CHIMPS. For minute details, the code is annotated in red below.

3. Transfer point/mesh from solvers
solver_getPoint(Mesh)Size

solver_getPoint(Mesh)Geom

Register point/mesh to CHIMPS
chimps_setPoint(Mesh)Geom

2. Initialize CHIMPS and solvers
chimps_initialize

solver_initialize

4. Construct interfaces
chimps_setInterface

5. Register the list of flow variables requested
chimps_setPointRequest

7. Search/Interpolation by CHIMPS
chimps_updateInterface

8. Transfer interpolated point data to solvers
chimps_getPointData

solver_setPointData

9. Actual time marching for each solver
solver_runIteration

6. Transfer mesh data to CHIMPS
solver_getMeshData

chimps_setMeshData

10. Finalize CHIMPS and solvers
solver_finalize

chimps_finalize

Final time step?

yes

no

Moving
grids?

no

yes

1. Initialize MPI
mpi_init

mpi_comm_size

mpi_comm_rank

First time step?

yes

no

Figure 22. Typical structure of a driver program.

25 of 28

American Institute of Aeronautics and Astronautics

!

! Driver to couple CDP and SUmb for flow over a pitching airfoil.

! - SUmb covers the near-blade domain pitching with the airfoil.

! - CDP covers the stationary outer domain.

!

program coupled_pitching_af

use mpi

use cdp_if_coupler_m This module contains all the CDP API routines.
use sumb_coupler_m This module contains all the SUmb API routines.
use chimps_m This module contains all the CHIMPS API routines.

implicit none

! ******* Beginning of driver parameters *******

! Variables needed for this driver are specified

! as parameters here...

integer(IP), parameter :: nSteps = 1000, &

Number of unsteady time steps for this session.
nProcsSUmb = 8, &

Number of processors alloted to SUmb. The rest is
for CDP.

nWriteStepsVolSUmb = 2, &

Writing interval for SUmb volume flow fields.
nWriteStepsSurSumb = 2

Writing interval for SUmb surface flow fields.
logical, parameter :: movGridSUmb = .true. , & Whether SUmb grids are moving

or not.
movGridCDP = .false., & Whether CDP grids are moving

or not.
adjustDt = .false.

Whether the driver readjusts the unsteady time step of
each solver.

! ********** End of driver parameters **********

integer(IP) :: ierr, nProcsDrv, myIDDrv, groupComm, &

nPoints, nNodes, nTetra, nPyra, nPrism, nHexa, &

ii, n, nVars, nInterfaces, nIterSUmb, nIterCDP

integer(IP), allocatable :: tetraConn(:,:), pyraConn(:,:), &

prismConn(:,:), hexaConn(:,:)

real(RP) :: tmpDrv1, tmpDrv2, rhoConstDrv, dtSUmb, dtCDP

real(RP), allocatable :: xyz(:,:), data(:,:)

character(len=80) :: groupName

character(len=80), allocatable :: varNames(:), interfaceNames(:)

character(len=4) :: ntstStr

character(len=2) :: myIDStr

! ********** Beginning of the program **********

! Initialize mpi...

call mpi_init(ierr)

call mpi_comm_size(mpi_comm_world, nProcsDrv, ierr)

call mpi_comm_rank(mpi_comm_world, myIDDrv, ierr)

! Define groupName...

if(myIDDrv < nProcsSUmb) groupName = ’SUMB’

if(myIDDrv >= nProcsSUmb) groupName = ’CDP’

! Initialize CHIMPS...

call chimps_initialize(groupComm, groupName, mpi_comm_world)

chimps initialize returns groupComm, which is a local communicator for each
solver.

! Initialize participating solvers...

if(groupName == ’SUMB’) then

call sumb_initialize(’param.in’, groupComm)

else if(groupName == ’CDP’) then

call cdp_initialize(’cdp_if.in’, groupComm)

endif

! Get some parameters from SUmb for later use...

tmpDrv1 = 0.

if(groupName == ’SUMB’) then

call sumb_getParam(tmpDrv1, ’density for initialization’)

density for initialization is the SUmb keyword for free-stream density.
Its value is obtained via sumb getParam.

endif

call mpi_allreduce(tmpDrv1, rhoConstDrv, 1, mpi_real8, mpi_max, &

mpi_comm_world, ierr)

The obtained value is shared by all processors.

! Set stationary point- and mesh-stuffs...

if(groupName == ’SUMB’) then

! Setup the point stuffs where data will be requested by SUmb...

call sumb_getPointSize(nPoints, ’SUmbRhouvwInterfaceFamily’)

allocate(xyz(3,nPoints))

call sumb_getPointGeom(xyz, ’SUmbRhouvwInterfaceFamily’)

call chimps_setPointGeom(xyz, nPoints, ’SUMB_POINTS’)

deallocate(xyz)

! Setup the SUmb mesh stuffs...

call sumb_getMeshSize(nNodes, nTetra, nPyra, nPrism, nHexa, &

’SUmbAirfoil’)

allocate(xyz(3,nNodes), tetraConn(4,nTetra), pyraConn(5,nPyra), &

prismConn(6,nPrism), hexaConn(8,nHexa))

call sumb_getMeshGeom(xyz, tetraConn, pyraConn, prismConn, &

hexaConn, ’SUmbAirfoil’)

call chimps_setMeshGeom(xyz, nNodes, tetraConn, nTetra, &

pyraConn, nPyra, prismConn, nPrism, &

hexaConn, nHexa, ’SUMB_MESH’)

deallocate(xyz, tetraConn, pyraConn, prismConn, hexaConn)

else if(groupName == ’CDP’) then

! Setup the point stuffs where data will be requested by CDP...

call cdp_getPointSize(nPoints, ’cdp_interface’)

allocate(xyz(3,nPoints))

call cdp_getPointGeom(xyz, ’cdp_interface’)

call chimps_setPointGeom(xyz, nPoints, ’CDP_POINTS’)

deallocate(xyz)

! Setup the CDP mesh stuffs...

call cdp_getMeshSize(nNodes, nTetra, nPyra, nPrism, nHexa, &

’default-interior’)

allocate(xyz(3,nNodes), tetraConn(4,nTetra), pyraConn(5,nPyra), &

prismConn(6,nPrism), hexaConn(8,nHexa))

call cdp_getMeshGeom(xyz, tetraConn, pyraConn, prismConn, &

hexaConn, ’default-interior’)

call chimps_setMeshGeom(xyz, nNodes, tetraConn, nTetra, &

pyraConn, nPyra, prismConn, nPrism, &

hexaConn, nHexa, ’CDP_MESH’)

deallocate(xyz, tetraConn, pyraConn, prismConn, hexaConn)

endif

! Setup the interfaces which are relationships between named point-

! and/or mesh-stuffs...

! This should be called by all participating processers...

call chimps_setInterface(’SUMB_INTERFACE’, &

CHIMPS_INTERPOLATE_FAILSAFE, &

’CDP_MESH’, ’CDP’, &

’SUMB_POINTS’, ’SUMB’)

call chimps_setInterface(’CDP_INTERFACE’, &

CHIMPS_INTERPOLATE_FAILSAFE, &

’SUMB_MESH’, ’SUMB’, &

’CDP_POINTS’, ’CDP’)

! Main iteration loop.

iter_loop: do n=1,nSteps

! Solvers determine the flow variables they need

! or should provide from their local domains...

if(groupName == ’SUMB’) then

! Data SUmb requests...

nVars = 7

allocate(varNames(nVars))

CGNS names are used to identify flow variables.
varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

call chimps_setPointRequest(varNames, nVars, ’SUMB_POINTS’)

deallocate(varNames)

! Data SUmb should provide...

nVars = 7

allocate(varNames(nVars))

varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

allocate(data(nVars,nNodes))

call sumb_getMeshData(data, varNames, nVars, ’SUmbAirfoil’)

call chimps_setMeshData(data, varNames, nVars, ’SUMB_MESH’)

deallocate(varNames, data)

else if(groupName == ’CDP’) then

! Data CDP requests...

26 of 28

American Institute of Aeronautics and Astronautics

nVars = 7

allocate(varNames(nVars))

varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

call chimps_setPointRequest(varNames, nVars, ’CDP_POINTS’)

deallocate(varNames)

! Data CDP should provide...

nVars = 7

allocate(varNames(nVars))

varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

allocate(data(nVars,nNodes))

call cdp_getMeshData(data, varNames, nVars, ’default-interior’)

call chimps_setMeshData(data, varNames, nVars, ’CDP_MESH’)

deallocate(varNames, data)

endif

! Do the actual exchange...

nInterfaces = 2

allocate(interfaceNames(nInterfaces))

interfaceNames(1) = ’SUMB_INTERFACE’

interfaceNames(2) = ’CDP_INTERFACE’

call chimps_updateInterface(interfaceNames, nInterfaces)

deallocate(interfaceNames)

! Get the data from CHIMPS and provide them to the appropriate solver...

if(groupName == ’SUMB’) then

nVars = 7

! A little bit of trick to provide the constant density to SUmb...

allocate(varNames(nVars+1))

varNames(8) is reserved for density.

varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

allocate(data(nVars+1,nPoints))

data(8,:) is reserved for density.

call chimps_getPointData(data, varNames, nVars, ’SUMB_POINTS’)

A constant density is directly specified here.
varNames(nVars+1) = ’Density’

data(nVars+1,:) = rhoConstDrv

call sumb_setPointData(data, varNames, nVars+1, ’SUmbRhouvwInterfaceFamily’)

deallocate(varNames, data)

else if(groupName == ’CDP’) then

nVars = 7

allocate(varNames(nVars))

varNames(1) = ’VelocityX’

varNames(2) = ’VelocityY’

varNames(3) = ’VelocityZ’

varNames(4) = ’TurbulentEnergyKinetic’

varNames(5) = ’TurbulentDissipation’

varNames(6) = ’TurbulentScalarV2’

varNames(7) = ’TurbulentScalarF’

allocate(data(nVars,nPoints))

call chimps_getPointData(data, varNames, nVars, ’CDP_POINTS’)

call cdp_setPointData(data, varNames, nVars, ’cdp_interface’)

deallocate(varNames, data)

endif

! Determine the unsteady time step...

if(adjustDt .and. n == 1) then

tmpDrv1 = 0.

tmpDrv2 = 0.

Time-step sizes for the two solvers are obtained via solver getParam.
if(groupName == ’SUMB’) then

call sumb_getParam(tmpDrv1, ’unsteady time step (in sec)’)

else if(groupName == ’CDP’) then

call cdp_getParam(tmpDrv2, ’DT’)

endif

Obtained values are shared by all processors.
call mpi_allreduce(tmpDrv1, dtSUmb, 1, mpi_real8, mpi_max, &

mpi_comm_world, ierr)

call mpi_allreduce(tmpDrv2, dtCDP , 1, mpi_real8, mpi_max, &

mpi_comm_world, ierr)

Readjust two ∆t’s so that one becomes an integer factor of the other.
if(dtSUmb >= dtCDP) then

nIterSUmb = 1

nIterCDP = int(dtSUmb/dtCDP)

dtSUmb = dtCDP*real(nIterCDP)

else

nIterCDP = 1

nIterSUmb = int(dtCDP/dtSUmb)

dtCDP = dtSUmb*real(nIterSUmb)

endif

Reset ∆t to the adjusted value via solver setParam.
if(groupName == ’SUMB’) then

call sumb_setParam(dtSUmb, ’unsteady time step (in sec)’)

else if(groupName == ’CDP’) then

call cdp_setParam(dtCDP, ’DT’)

endif

else if((.not. adjustDt) .and. n == 1) then

nIterSUmb = 1

nIterCDP = 1

endif

! Run actual iterations...

if(groupName == ’SUMB’) then

call sumb_runIteration(nIterSUmb)

else if(groupName == ’CDP’) then

call cdp_runIteration(nIterCDP)

endif

if(groupName == ’SUMB’) then

if(mod(n,nWriteStepsVolSUmb) == 0) &

call sumb_writeVolumeSolutionFile

if(mod(n,nWriteStepsSurSUmb) == 0) &

call sumb_writeSurfaceSolutionFile

endif

if(((.not. movGridSUmb) .and. (.not. movGridCDP)) &

.or. (n == nSteps)) cycle iter_loop

if(movGridSUmb .and. groupName == ’SUMB’) then

! Setup the point stuffs where data will be requested by SUmb...

call sumb_getPointSize(nPoints, ’SUmbRhouvwInterfaceFamily’)

allocate(xyz(3,nPoints))

call sumb_getPointGeom(xyz, ’SUmbRhouvwInterfaceFamily’)

call chimps_setPointGeom(xyz, nPoints, ’SUMB_POINTS’)

deallocate(xyz)

! Setup the SUmb mesh stuffs...

call sumb_getMeshSize(nNodes, nTetra, nPyra, nPrism, nHexa, &

’SUmbAirfoil’)

allocate(xyz(3,nNodes), tetraConn(4,nTetra), pyraConn(5,nPyra), &

prismConn(6,nPrism), hexaConn(8,nHexa))

call sumb_getMeshGeom(xyz, tetraConn, pyraConn, prismConn, &

hexaConn, ’SUmbAirfoil’)

call chimps_setMeshGeom(xyz, nNodes, tetraConn, nTetra, &

pyraConn, nPyra, prismConn, nPrism, &

hexaConn, nHexa, ’SUMB_MESH’)

deallocate(xyz, tetraConn, pyraConn, prismConn, hexaConn)

else if(movGridCDP .and. groupName == ’CDP’) then

! Setup the point stuffs where data will be requested by CDP...

call cdp_getPointSize(nPoints, ’cdp_interface’)

allocate(xyz(3,nPoints))

call cdp_getPointGeom(xyz, ’cdp_interface’)

call chimps_setPointGeom(xyz, nPoints, ’CDP_POINTS’)

deallocate(xyz)

! Setup the CDP mesh stuffs...

call cdp_getMeshSize(nNodes, nTetra, nPyra, nPrism, nHexa, &

’default-interior’)

allocate(xyz(3,nNodes), tetraConn(4,nTetra), pyraConn(5,nPyra), &

prismConn(6,nPrism), hexaConn(8,nHexa))

call cdp_getMeshGeom(xyz, tetraConn, pyraConn, prismConn, &

hexaConn, ’default-interior’)

27 of 28

American Institute of Aeronautics and Astronautics

call chimps_setMeshGeom(xyz, nNodes, tetraConn, nTetra, &

pyraConn, nPyra, prismConn, nPrism, &

hexaConn, nHexa, ’CDP_MESH’)

deallocate(xyz, tetraConn, pyraConn, prismConn, hexaConn)

endif

enddo iter_loop

! Finalize each solver...

if(groupName == ’SUMB’) then

call sumb_finalize()

else if(groupName == ’CDP’) then

call cdp_finalize()

endif

! Finalize CHIMPS...

call chimps_finalize()

! Terminate the MPI session...

call mpi_finalize(ierr)

! ********** End of the program **********

end program coupled_pitching_af

28 of 28

American Institute of Aeronautics and Astronautics

