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In the design of supersonic low-boom aircraft, it is important to balance the aero-
dynamic performance and sonic boom requirements in a way that represents the best
compromise for the overall design. Since the ground sonic boom is typically not a smooth
function of the design variables and may actually contain multiple local minima, it is
important to select an optimization algorithm that is able to cope with this kind of de-
sign space. In this work, we study the use of Kriging approximation models for both
boom and performance and use them in conjunction with genetic algorithm techniques
to investigate the computational cost and characteristics of such an approach for the
design optimization of a low-boom supersonic business jet (SBJ). Direct use of genetic
algorithms with high-fidelity CFD analysis tools has been limited by the inherently large
computational cost of genetic algorithms (GAs). The use of computationally inexpensive
approximation models in lieu of high-fidelity CFD greatly improves the robustness and
efficiency of the design process for searches in relatively large design spaces. In order to
improve the performance of this method, a new hybridization strategy that combines a
GA with gradient information is proposed and its improved convergence rate is demon-
strated. Regardless, the proposed procedures still require a large number of evaluations
of the flow and boom patterns for different points in the design space. For this purpose
we have built two automated Euler analysis tools that use a CAD-based geometry engine,
and both multiblock-structured and unstructured, adaptive meshing techniques (they are
named QSP107 and QSP-UA respectively). QSP-UA, has been developed to handle the
geometric detail of the complete configuration including wing, fuselage, nacelles, divert-
ers, empennage, etc., and to provide accurate performance and boom data. Results of
sample test problems, and a 15-dimensional design case are presented and discussed.

1. Introduction

FOR decades, the development of economically
and environmentally acceptable supersonic air-

craft has been identified as a key step toward the next
generation of aviation history that could improve many
aspects of human life and foster economic growth. The
partial consensus view of prospective manufacturers of
supersonic aircraft is that the supersonic business jet
(SBJ) is a near-term-realizable class of vehicle having
significant economic potential and with an estimated
market of at least 200 aircraft over a 10-year period.1

The key technology barrier for this class of aircraft is
the elimination, or reduction to acceptable levels, of
the sonic boom for flight over land while guarantee-
ing the challenging performance requirements of the
other major disciplines. This essentially means that all
major disciplines including aerodynamics, structures,
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stability and control, mission, and propulsion should
be taken into account from the early stages of design
process; therefore, boom reduction must be considered
as an additional aspect of the MDO problem.

MDO methods, particularly those based on high-
fidelity analyses, greatly increase the computational
burden and complexity of the design process.2–5 For
this reason, high-fidelity analysis software typically
used in single discipline designs may not be suitable
for direct use in MDO.3,6 Faced with these problems,
the alternative of using approximation models of the
actual analysis software has received increased atten-
tion in recent years.

The Kriging technique, developed in the field of geo-
statistics, has been recognized as an alternative to the
traditional polynomial function-based Response Sur-
face method in generating approximation models of
computationally expensive CFD analyses. In theory,
it is able to interpolate sample data and to model func-
tions with multiple local extrema.8,9 Using variations
of the method of design of experiments (DOE), the
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Kriging model can efficiently represent global trends
of design space.

Once a approximation model is generated, it can
easily be used to search for optimum combinations
of design variables within the design space. Since
the Kriging model can represent multimodal functions
with relatively low computational cost, it would be
reasonable to choose a global optimization scheme as
the optimizer.

Genetic algorithms (GAs) are search algorithms
based on the mechanics of natural selection where
the encoded design variables (or so-called genes) are
manipulated using genetic-like operators such as se-
lection, crossover and mutation to generate new popu-
lations of candidate design points. One of the biggest
advantages of GAs is their robustness. Since GAs do
not require sensitivity information, they can be applied
to realistic design environments where discontinuities,
multimodality and noisy responses may exist. They
also have considerable advantages for multiobjective
design problems to obtain Pareto optimal sets. A ma-
jor drawback of the GA approach is that it requires
many generations to locate the global optimum point.
Because of this reason, the utilization of GAs in high-
dimensional design spaces with high-fidelity analyses
has been impractical, if not impossible. Therefore,
the use of accurate and efficient approximation mod-
els with the ability to simulate the multimodal nature
of some objective functions can help decrease the cost
in realistic design problems. Goldberg introduced the
idea of using approximation models with GAs under
the name of “knowledge-based GAs.10” In this work,
and starting from this strategy, a new hybridization
approach that combines GAs with the available gra-
dient information has been proposed and its improved
convergence rate has been demonstrated. We have also
studied the use of Kriging models as gradient estima-
tors for CFD-based GAs in the low-boom SBJ design
problem.

There have been many difficulties in analyzing sonic
boom signatures using CFD methods. These problems
are associated with issues of mesh resolution, arti-
ficial dissipation formulation, two-dimensional versus
three-dimensional signature propagation methods, and
the exact formulation of these propagation procedures.
The fundamental difficulty in predicting sonic booms
accurately is that a near-field pressure signature must
be obtained sufficiently far from the aircraft so that the
pressure disturbance can be modeled using geometrical
acoustics. Given the dissipative nature of CFD meth-
ods, very high mesh resolution is required between the
lower surface of the aircraft and the near-field loca-
tion (typically 1-5 body lengths below the aircraft)
leading to extremely large meshes even for inviscid cal-
culations. This mesh resolution/distribution issue is
tightly coupled with the fact that complex geometry
representation (full configurations including nacelles,

diverters, etc.) is typically necessary in the shaping of
low sonic boom aircraft. Complete configurations also
require higher mesh resolution for capturing shock and
expansion waves around the aircraft.

Unstructured meshes are ideally suited to address
these meshing issues since they can easily conform to
arbitrarily complex aircraft shapes and they can be
locally adapted to capture the relevant physical phe-
nomena. This adaptive mesh refinement strategy can
improve computational efficiency in the presence of fi-
nite computing resources.

An automated, nonlinear integrated boom anal-
ysis tool, QSP-UA, which incorporates a routine
for adaptive unstructured mesh generation, a three-
dimensional Euler flow solver, and a boom propagation
procedure has been developed and is used here for the
computation of accurate near-field and ground pres-
sure distributions. This tool is used for collecting
sample data for the creation of approximation mod-
els.

In this paper, our intention is to explore the ap-
plicability and efficiency of using genetic algorithm
techniques in conjunction with approximation mod-
els representing response functions with multiple local
minima and sharp discontinuities in the multidimen-
sional design optimization of a low-boom supersonic
business jet configuration. The goal of this multiob-
jective design optimization problem is to reduce the
sonic boom signature at the ground by modifying the
aircraft configuration parameters while preserving or
improving aerodynamic performance.

2. Overview of Kriging Method
The Kriging technique uses a two component model

that can be expressed mathematically as

y(x) = f(x) + Z(x), (1)

where f(x) represents a global model and Z(x) is
the realization of a stationary Gaussian random func-
tion that creates a localized deviation from the global
model.12 If f(x) is taken to be an underlying con-
stant,9 β , Equation (1) becomes

y(x) = β + Z(x), (2)

which is used in this paper. The estimated model of
Equation (2) is given as

ŷ = β̂ + rT (x)R−1(y − f β̂), (3)

where y is the column vector of response data and f is
a column vector of length ns which is filled with ones.
R in Equation (3) is the correlation matrix which can
be obtained by computing R(xi, xj), the correlation
function between any two sampled data points. This
correlation function is specified by the user. In this
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work, the authors use a Gaussian exponential correla-
tion function of the form provided by Giunta, et al.7

R(xi, xj) = exp

[
−

n∑

k=1

θk|xi
k − xj

k|2
]

. (4)

The correlation vector between x and the sampled
data points is expressed as

rT (x) = [R(x, x1), R(x,x2), ..., R(x,xn)]T . (5)

The value for β̂ is estimated using the generalized least
squares method as

β̂ = (fT R−1f)−1fT R−1y. (6)

Since R is a function of the unknown variable θ, β̂
is also a function of θ. Once θ is obtained, Equation
(3) is completely defined. The value of θ is obtained
by maximizing the following function over the interval
θ > 0

− [ns ln(σ̂2) + ln |R|]
2

, (7)

where

σ̂2 =
(y − f β̂)T R−1(y − f β̂)

ns
. (8)

In order to construct a Kriging approximation the
only data required are the function values at a number
of pre-specified sample locations. For many computa-
tional methods, secondary information such as gradi-
ent values may be available as a result of the analysis
procedure. Alternatively, the gradient vector can be
computed with very little additional cost, as is the
case in the adjoint method.4 Gradient information
is usually well cross-correlated with the function val-
ues and thus contains useful additional information.
The efficiency and accuracy of Kriging models can
be greatly improved by incorporating these secondary
function values.13 This technique, known as the Cok-
riging method, has been investigated and validated in
our previous work.14,15

3. Advanced Genetic Algorithms
3.1 Multiobjective Genetic Algorithms

Many real-world optimization problems, especially
in MDO situations, require the simultaneous optimiza-
tion of possibly conflicting multiple objectives: this
approach is often referred to as multiobjective opti-
mization. Unlike single-objective optimization where
only one optimal solution is pursued, a typical multi-
objective optimization problem produces a set of solu-
tions which are superior to the rest with respect to all
objective criteria, but are inferior to other solutions in
one or more objectives. These solutions are known as
Pareto optimal solutions or non-dominated solutions.
None of the solutions in the Pareto optimal set is ab-
solutely better than any others with respect to all of

         Selection

   Crossover

Population
Initialization

New Population

Elitism

Nominal
Convergence?

Yes

No

External Memory
(Pareto Set Archive)

from Archive?
Yes

No

    (Mutation)

Fitness Evaluation/
Pareto Ranking

Elitism

Fig. 1 Flow Chart for Multiobjective GA

the objectives being considered; therefore, any one of
them is an acceptable solution. Once the set of opti-
mal solutions is identified, it is left to the designer to
choose one solution out of the many possible ones.

A genetic algorithm can use this dominance criteria
in a straightforward fashion to drive the search process
toward the Pareto front. Due to the unique features
of GAs, which work with a population of solutions,
multiple Pareto optimal solutions can be captured in
a single run. This is the primary reason that makes
GAs ideally suited for multiobjective optimization.

A recent study by Coello16 proposed a micro-GA-
based multiobjective optimization that uses an exter-
nal file of non-dominated vectors found in previous
generations to accelerate the multiobjective optimiza-
tion process. The method implemented an additional
elitism strategy and an adaptive grid-type technique
to accelerate the convergence and to keep the diver-
sity in the Pareto front. The Micro-GA algorithm is
a specialized GA that works with a very small pop-
ulation size of usually 3-6 and a reinitialization step.
Studies16,17 have shown that micro-GAs achieved a
faster convergence rates than simple GAs. In the
present research, some of the ideas of Coello’s work
have been adapted to a single objective micro-GA al-
gorithm along with the traditional Goldberg’s Pareto
ranking approach in order to develop an efficient and
robust design framework. The authors have modified a
micro-GA algorithm originally developed by Carroll.18

The procedure is illustrated in Figure 1. First, a ran-
dom population is generated and their objective values
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are calculated as in the original micro-GA. Then, to
ensure that all the non-dominated individuals have
same level of reproductive potential, Goldberg’s non-
dominated sorting procedure is implemented. There-
fore, the fitness level of each individual is determined
based on the non-domination criterion rather than the
objective function value itself.

Based on the rank of non-dominance, the popula-
tion goes through the usual operations of micro-GA,
namely selection and crossover, and check to see if
the nominal convergence among the population points
has been reached. If the problem is not converged,
the algorithm returns to the function evaluation and
non-dominance ranking steps for the new generation,
otherwise it continues on to the reinitialization step.

Two types of elitism are implemented in the reini-
tialization step. The first type carries on the best
solutions from the previous nominal convergence stage.
This is the same elitism strategy used in the single ob-
jective micro-GA. The second type involves the storing
of non-dominated vectors produced from each cycle of
micro-GA to an external file and inserting some of the
best solutions generated so far in the reinitialized pop-
ulation for the micro-GA. This process is applied at
regular intervals to improve the non-dominated solu-
tions by getting closer to the true Pareto front or by
achieving a better distribution.

3.2 Gradient Enhanced Micro-GA

The convergence history of GAs can be character-
ized as having a fast portion during the early stage of a
run followed by very slow progress in the later stages.
This means that GAs work reasonably well up to a
near-optimal solution but they consume an unaccept-
able number of generations and function evaluations
to attain the real optimum. Because of this, an ob-
vious improvement to the GA is to take advantage of
the characteristics of gradient-based optimizers after
a certain level of convergence has been achieved by
the GA. The strategy of traditional hybridization is
to obtain some of the candidates for the optimal solu-
tion from the GA and to then apply a gradient-based
optimizer starting from those points to accelerate the
convergence to the optimal point. This approach can
be seen in Figure 2 below.

A new strategy of hybridization using gradient in-
formation is proposed in the present research. Instead
of combining a gradient-based optimizer at the end of
a GA run, the proposed method implements the gra-
dient information at every generation of the GA. The
schematic procedure of the method is shown in Fig-
ure 3. The only difference between the new hybrid
micro-GA and the original micro-GA is that all the
individuals in a population are updated or improved
using the steepest descent method with the gradient
information available before they go through the pro-
cesses of selection and crossover at each and every
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Gradient−Based
Local Search

GA−Based
Global Search

Gradient−Based
Local Search         Selection

   Crossover          Selection

   CrossoverMutation

Mutation

(Traditional Hybrid Strategy) (New Hybrid Strategy)

Fig. 2 New Hybrid GA Strategy
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Fig. 3 Flow Chart for Gradient-Enhanced Micro-
GA

generation. That is, the hybridization is achieved by
inserting a gradient-based optimizer (steepest descent
method) at the GA operator level. This results in more
closely combined hybridization procedures.

3.3 Approximation Model based micro-GA

Once fairly accurate global approximation models
are constructed with computationally efficient tech-
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niques such as the Kriging or Cokriging methods,
combining them with GAs becomes an obvious choice
to overcome the computational burden presented by
directly-coupled GA methods. Since the computa-
tional cost of estimating the objective function through
the approximation models is trivial, the slow conver-
gence rate of GAs leading to many generations and
function evaluations to get to the optimal solution does
not matter any more. If the approximation model is
accurate enough, it can even provide auxiliary infor-
mation such as gradients to accelerate the process even
further. In addition, GAs are a more suitable approach
than gradient-based methods for use with approxima-
tion models that can support multimodal functions.

The approximation model itself can benefit from the
use of a direct GA by recycling the rich dataset pro-
duced with each population. The mutual benefits of
combining these two methods can provide the efficient
and robust design framework necessary in MDO. Yet
another way of using approximation models for accel-
erating the GA process is to use them as a gradient
estimators to provide the necessary gradient informa-
tion for the hybrid micro-GA proposed in the previous
section. Note that even though adjoint methods can
provide gradient information cheaply and efficiently,
the derivation of the adjoint equations and boundary
conditions can not be carried out for arbitrary cost
functions. In addition, an adjoint code implementa-
tion might take months of validation. Therefore, the
approximation models can be a useful and inexpensive
alternative for computing the gradients.

4. Test Problem :
Low-Boom Supersonic Business Jet

(SBJ) Design
The design problem in question involves the simul-

taneous ground boom and drag minimization of a
supersonic business jet wing-body-tail (and possibly
nacelles with the unstructured method) configuration
at a specified lift coefficient, CL = 0.07104, which
corresponds to a cruise weight of 100, 000 lbs at a
cruise altitude of 50, 000 ft. The wing reference area is
1, 032 ft2. The free-stream flow conditions were fixed
at M∞ = 2.0. The aircraft geometry and flow condi-
tions were parameterized directly in CAD using 108
design variables.19 The list of geometric design vari-
ables for the 15-dimensional design problem which we
will describe later is given below:

x1= wing position along fuselage
x2= wing dihedral angle
x3= wing sweep angle
x4= wing aspect ratio
x5= wing leading edge extension
x6= upper fuselage radius at 12.50% of fus. length
x7= upper fuselage radius at 18.75% of fus. length
x8= upper fuselage radius at 25.00% of fus. length

x9= upper fuselage radius at 31.25% of fus. length
x10= upper fuselage radius at 37.50% of fus.

length
x11= lower fuselage radius at 12.50% of fus. length
x12= lower fuselage radius at 18.75% of fus. length
x13= lower fuselage radius at 25.00% of fus. length
x14= lower fuselage radius at 31.25% of fus. length
x15= lower fuselage radius at 37.50% of fus. length

The wing planform for this configuration was de-
signed with experience from our previous supersonic
work to have a portion with a subsonic leading edge
followed by an outboard panel with a supersonic lead-
ing edge. This helps increase the span to achieve better
low-speed performance at a small cost in cruise perfor-
mance. The airfoil sections for the outboard portion
of the main wing and the horizontal tail were cho-
sen to be simple biconvex airfoils of varying thickness,
while an RAE2822 was used for the inboard part of the
main wing with a subsonic leading edge. Fuselage aft-
mounted nacelles are included in the baseline design,
although their presence was only modeled in the op-
timization results based on our unstructured analysis
environment.

A CFD/boom analysis of the two objective criteria
considered in this study yields values for the baseline
design of an inviscid coefficient of drag, CD = 0.010046
and an initial shock pressure rise, ∆p = 0.91157psf
respectively. The performance of the baseline config-
uration at this low CL condition is admittedly low so
that we can analyze the speed with which the pro-
posed algorithms approach the Pareto fronts. We are
currently repeating the optimizations presented in this
paper with a baseline design that has been thoroughly
optimized (for aerodynamic performance alone) using
our multiblock adjoint design program.19 All improve-
ments in either or both of these criteria are measured
against the value for this baseline configuration.

5. Design Tools
In order to develop Kriging and Cokriging approxi-

mation models, a large number of CFD computations
for different geometries must be carried out automat-
ically. For this purpose, we have developed two sepa-
rate nonlinear integrated boom analysis tools, QSP107
and QSP-UA, that can provide both ground boom
and aerodynamic performance information by simply
changing a small set of configuration variables that are
provided in an input file. QSP107 is our structured-
mesh analysis suite, while QSP-UA relies on an un-
structured adaptive tetrahedral flow solver.

5.1 QSP107

QSP107 is a nonlinear integrated tool for both sonic
boom prediction and aerodynamic performance analy-
sis based on fully nonlinear CFD. This tool couples
the multiblock Euler and Navier-Stokes flow solver
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for structured mesh, FLO107-MB,20 to a CAD-based
geometry kernel and a mesh perturbation procedure
for efficient mesh regeneration, and to the PC Boom
software for far-field propagation developed by Wyle
Associates.22 A flowchart of the automated analysis
process can be seen in Figure 5.

The procedure starts with a CAD-based geome-
try generation module called AEROSURF that uses
a parametric CAD model to automatically generate
the necessary surface meshes to describe the configu-
ration in question.19 This geometry module is based
on a parametric aircraft description with 108 design
variables of which only a small subset (either two or
fifteen) are chosen for our optimization applications.
AEROSURF relies on the CAPRI CAD interface of
Haimes19,23 to provide access to a number of paramet-
ric CAD software programs including Pro/Engineer,
CATIA V5, SolidWorks, and I-DEAS. Parametric air-
craft models of arbitrary complexity can be created
and used within this environment, thus automating
some of the most complicated geometry manipulations
that are the heart of any high-fidelity design proce-
dure.

The surface meshes generated by AEROSURF, to-
gether with an initial multiblock mesh that is gen-
erated using the Gridgen software24 are passed to a
mesh perturbation routine called Meshwarp that can
handle arbitrary configurations and generate volume
meshes corresponding different surface geometries. As
constructed, the meshes have higher resolution in the
areas where shock waves and expansions are present
below the aircraft, and the grid lines are slanted at the
Mach angle to maximize the resolution of the pressure
signature at a distance of the order of one to three
fuselage lengths below the aircraft. The user may
specify the location of an arbitrary cylindrical surface
where the near-field signature is extracted from the
multiblock flow solution and then provided as an input
to a modified version of PC Boom which propagates
a full three-dimensional signature along all rays that
reach the ground. This allows for the calculation of
arbitrary cost functions (not only ground-track initial
overpressure) that may involve weighted integration
of the complete sonic boom footprint. In this work,
however, only the ground track overpressure has been
considered.

The flow solver, FLO107-MB, combines advanced
multigrid procedures and a preconditioned explicit
multistage time-stepping algorithm which allows full
parallelization. Because of the advanced solution algo-
rithms and parallelization, the integrated tool provides
fully nonlinear simulations with very rapid turnaround
time. Using typical meshes with over 3 × 106 mesh
points we can obtain a complete flow solution and
ground signature in around 7 minutes, using 16 proces-
sors of a Beowulf cluster made up of AMD AthlonXP
2100 processors. In this work, QSP107 has been used

repeatedly to generate Kriging and Cokriging approx-
imation models and it has also been directly coupled
with a genetic algorithm for the design optimization
process.

5.2 QSP-UA

QSP107 imposes some limitations on the magnitude
of the shape perturbations that can be handled since it
relies on a single multiblock mesh (generated prior to
the start of the design procedure) and a mesh pertur-
bation routine. If the surface perturbations are large,
the mesh perturbation procedure may fail.

In order to overcome these limitations when explor-
ing very large design spaces, QSP-UA includes and
unstructured adaptive mesh generation/perturbation
capability based on the Centaur mesh generation soft-
ware.25 As in QSP107 the procedure is fully auto-
mated from the specification of the design variables
for a given configuration to the computation of both
the coefficient of drag and the ground boom overpres-
sures.

This tool integrates the three-dimensional Euler
flow solver AirplanePlus which is a C++ implemen-
tation of the original AIRPLANE solver of Jame-
son28 with an agglomeration multigrid strategy, and
MPI-based parallelization, and the ability to solve the
Reynolds-Averaged Navier-Stokes (RANS) equations
on unstructured tetrahedral meshes. As in QSP107,
the unstructured adaptive solution is passed to the
PC Boom software to propagate the near-field pres-
sure distributions to the ground.

QSP-UA functions in a manner that is similar to
QSP107 except for the surface and volume mesh gen-
eration and the actual flow solver. It also uses AERO-
SURF to provide the surface definition of the aircraft
geometry. With the input of this CAD-defined geome-
try and pre-defined far-field boundaries, Centaur uses
an advancing-front method to generate both surface
and volume meshes.

Tetrahedral Mesh Generation
The current methods available for the generation of

tetrahedral meshes29–31 are typically based on either
advancing front or Delaunay triangulation ideas. In
our work, the advancing-front method26 in the form of
the Centaur software is used for mesh generation and
perturbation.

As mentioned above, the Centaur software is used
in our work to construct meshes for aircraft configura-
tions and to enhance grid quality through automatic
post-processing. Only the fine meshes need to be ex-
plicitly constructed since our multigrid algorithm is
based on the concept of agglomeration and, therefore,
coarser meshes are obtained automatically.

Figure 4 shows a typical, unadapted, tetrahedral
mesh around our baseline configuration. The figure
contains only the surface triangles of the aircraft and
the symmetry plane for visualization purposes.
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Fig. 4 Unstructured tetrahedral surface mesh
around a low-boom aircraft

Mesh Adaptation Procedures

Once an initial solution has been computed on the
tetrahedral mesh, the grid needs to be locally adapted
to better capture specific features with higher accu-
racy at lower cost. This can be achieved through a
more optimal distribution of grid points for each com-
puted solution: unstructured tetrahedral elements are
well suited for cell adaptation. For the cases that we
have studied, coarsening has only a minor performance
impact in steady-state calculations and is omitted in
this study.

The adaptation procedure utilizes h-refinement or
subdivision techniques. For each edge that is flagged
by the error estimation technique, new mesh nodes are
inserted at the midpoint. For boundary edges, these
points are repositioned onto the splined surface which
defines the original geometry from the CAD pack-
age. The current post-adaptation grid-improvement
scheme employs face and edge swapping. Undesir-
able shape measures are investigated and new local
tetrahedral configurations with more desirable shape
measures are selected.

The adaption procedure is, of course, recursive, and
it proceeds until a certain level of error has been
achieved or a maximum number of refinement levels
has been accomplished. Figure 6 (a) shows the mesh
after the first adaptation. The selection of the initial
mesh resolution is important to capture the underly-
ing pressure gradients. Since boom prediction is the
driving feature to be captured in this study and shock
angle is relatively predictable, uniform local adapta-
tion (mainly in the region under the aircraft) is per-
formed after the initial mesh is generated. Figure 6 (b)
shows the solution-adapted mesh after two adaptation
steps. Typically, four consecutive adaption cycles are
performed automatically starting with the initial mesh
to reach the necessary solution quality.

The most popular refinement options for fluid-flow

problems are heuristically derived gradient-based cri-
teria, which involve a single or multiple physical flow
variables. The gradient of pressure can be used to
identify inviscid flow features. But in sonic boom
prediction problems the pressure gradient in the near
field is as important as in the neighborhood of the
aircraft. In addition, the direction of the gradient
should be taken into account as well. In this study,
a pre-specified range of velocity gradient magnitudes
which are projected onto the direction of the local pres-
sure gradient work successfully to predict the shock
location and to capture small pressure gradients in
near-field.

In the following expression for the adaption criterion
V is the velocity vector, c is speed of sound and 4x is
required minimum edge length.

ε
′
=

V
c
· ∇p

|∇p| (9)

Numerical experiments32 indicate that the modifica-
tion of the previous equation to include a local mesh
length-scale such as:

ε =
V
c
· ∇p

|∇p|4x (10)

produces a more effective refinement criterion for
shock/expansion flows. This is partially due to the
fact that while the simple gradient-based criteria de-
creases in magnitude as the mesh is refined in smooth
regions of flow, it remains approximately constant in
the vicinity of shock waves, since the shock wave profile
steepens as the mesh is refined, and the jumps re-
main almost constant. However, even in the regions of
smooth flow, the additional length scale weights larger
cells more heavily than small cells, and drives the
adaptation process closer toward global refinement.

6. Results
6.1 Validation of Cokriging Method

CD Optimization for 2-Dimensional Design Case
Two-dimensional Cokriging models were created for

the CD of the supersonic business jet test problem us-
ing sample data obtained from CFD analyses. The
intent is to validate and investigate the ability of these
models to approximate the results of the original CFD
code. The two design parameters chosen as were the
wing streamwise location along fuselage and the radius
of the fuselage at its mid-point. 400 CFD calculations
were performed by varying the design variables to ob-
tain a graphical representation of the actual objective
functions. The results are shown in Figure 7 (a). The
design variables were chosen so as to generate a re-
alistic test function having multiple local extrema to
check the ability of Cokriging models to simulate this
feature. One important point to note from the Figure
is that the actual drag coefficient varies smoothly with
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respect to the geometric design variables. The selec-
tion of Gaussian exponential correlation function for
the Kriging method was based on the assumption that
the response function to be modeled was very smooth
in nature. Thus, Figure 7 (a) provides the validation of
the assumption and the rationale for using the Gaus-
sian correlation function in this problem.

A total of 9 sample points were used to generate the
original Kriging model, and the 9 sample points to-
gether with gradient information at these points were
used for the Cokriging models. From the comparisons
in Figure 7, it is clear that Cokriging models performed
much better than the Kriging model in predicting both
the general shape and magnitude of the objective func-
tion. The discrepancies in the original Kriging model
are caused by under-sampling.

In order to investigate the applicability of the Cok-
riging models in 2-dimensional design spaces, CD op-
timizations were performed using each of the approx-
imation models generated above. Figure 8 (a) shows
the CD optimization results using the database con-
structed from 400 CFD calculations over the design
space. The optimization used a gradient-based method
from Matlab33 and was repeated five different times by
changing the starting points. Four of them converged
to one local minimum point and one converged to a
different one. The optimizations were again repeated
using the different approximation models generated
from Kriging and Cokriging methods, and the results
are compared in the subsequent figures. As shown, the
predicted optimum design point and optimum value of
CD for these cases were nearly identical. The predicted
CD from the CFD database was 0.0059708 whereas
those for the Cokriging models with 5 and 9 sample
points (and gradients) were 0.0059759 and 0.0059758
respectively with almost the same optimum design
point locations. The relative error for the optimized
CD value is within 0.086%. As we can observe from
Figure 8 (b), the ability of the original Kriging method
to simulate the unknown function was clearly limited
without an extensive set of sampled data. The opti-
mum point and the predicted CD value were far off
from the actual ones.

Boom Optimization for 2-Dimensional Design Case

The procedure used in the previous section was re-
peated for ground boom minimization with a different
set of design variables. This time, the design variables
and their range of variation were specifically selected
to present a challenging boom minimization case. The
two design variables selected represent the radii of two
fuselage sections located at 10% and 20% of the length
of the fuselage. A total of 121 CFD calculations were
carried out and the results of the boom strength vari-
ation over the design space are shown in Figure 9 (a).
Unlike the CD objective function case, the values of the
initial shock jump at the ground vary almost linearly

with each design variable until sharp discontinuities
are found for lower values of both design variables.
This kind of functional variation is considered to be
quite difficult to capture with a small number of sam-
ple data points. The subsequent Figures show the
approximations of the exact boom overpressure values
using both Kriging and Cokriging models with 5 sam-
ple data points. Similarly to the previous test case, the
accuracy of the Kriging model was improved by the ad-
dition of gradient information, although the function
fits were not as good as in the coefficient of drag case.

Even though Cokriging models had some difficulty
to capture the exact variation of the overpressures
over the entire design space, three successive design
iterations using an empirical trust region methodol-
ogy produced quite satisfactory results. Figure 10 (a)
shows the history of sample points computed for all
three design iterations as well as the evolution of the
optimum design point superimposed on the exact CFD
contour plot (for reference purposes only). Figures 10
(b),(c),(d) represent Cokriging models and the loca-
tion of the sample points for each design iteration as
well as the true and estimated optima for the Cokrig-
ing models. After three design iterations the actual
location and the function value of the local minimum
was achieved fairly accurately.

6.2 Validation of Gradient Enhanced micro-GA

The results of tests of the new hybridization strat-
egy are presented in this section. In Figure 11 (a) (b)
we compare the results of the pure micro-GA and gra-
dient enhanced micro-GA algorithms applied to single
objective optimization problems on 2-dimensional test
functions. The extension of the idea to multiobjec-
tive optimization was also tested on 2-D and 10-D test
cases and the results are presented in Figure 11 (c)
(d). The use of gradient information inside of the GA
clearly improves the overall efficiency of the process
in terms of the required number of function evalu-
ations to obtain an optimal or sub-optimal solution.
GAs have the merit of robustness, implying that they
can be used in a wide variety of application problems,
but has somewhat poor efficiency in that they require
many function evaluations. Gradient-based optimiz-
ers, on the other hand, have very high convergence
rates but somewhat limited applicability in boom op-
timization problems. The new idea of hybridization
makes it possible to achieve a high level of robustness
and efficiency at the same time.

6.3 15-Dimensional Design Problem with QSP107

Multiobjective Optimization using Kriging-Based
micro-GAs

Using a latin hypercube sampling technique, 150
sample points around the baseline design point were
selected and their performance values were computed
using QSP107 calculations. A Kriging model was
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then generated based on the sampled data and used
for the function evaluation routine within the MOGA
search. The estimated Pareto set from the Kriging-
based MOGA search procedure is plotted as black cir-
cles whereas the CFD validation results of the Pareto
set are shown as red asterisks in Figure 12 (a). The
results of the MOGA search directly connected to
QSP107 for 120 generations are also plotted as blue
dots for comparison purposes. The CD values of the
estimated Pareto set from the Kriging-based MOGA
and their CFD validation calculations were surpris-
ingly well matched while some of the values of the
boom estimations were far off from their CFD counter-
parts. The results demonstrate the fact that the boom
design space may have discontinuous or non-smooth
regions and cause difficulties in generating accurate
Kriging models. However, the estimation produced
some good design points in terms of both design crite-
ria.

One drawback of the Pareto design points was that
the ground boom signatures had shapes such that the
distance (or time) between the first and second shocks
were very small. The outcome implied that the ob-
tained design points were very sensitive to changes in
the design variables and would therefore not be accept-
able to designers in search of robust designs. The first
design iteration described above was repeated with a
constraint imposed on the distance between the first
and the second peaks of the ground boom signature
and its results are presented in Figure 12 (b). Im-
proved Pareto designs (in terms of robustness) were
obtained even though the actual values of design cri-
teria did not improve as much as in the previous case.

The second design cycle was performed by collecting
another 150 samples around the best designs identified
from the previous design cycle, and generating Kriging
models for the MOGA search procedure. The results
are shown in Figure 12 (c). The estimated Pareto front
and the CFD validation results became much closer to
each other, as expected, since the design space was
restricted for this second iteration.

The resulting design configuration of a point on the
Pareto front is compared with that of baseline design
in Figure 13. The wing sweep angle, leading edge ex-
tension, and dihedral angle increased while the wing
position along the fuselage and wing aspect ratio de-
creased. The nose section was deformed such that it
decreased the initial shock strength from the nose and
generated an expansion region by inducing a bump-like
shape at the lower fuselage section. The effect of this
expansion wave is to both weaken the initial shock and
to prevent the first and second shocks from coalescing.

Gradient Enhanced Multiobjective Genetic Algorithms
(GEMOGA) with Kriging Models

The idea of using Kriging models to provide gradient
information to the QSP107-based MOGA in order to

accelerate the search procedure was tested using the
Kriging models obtained from the first design cycle.
The results are presented in Figure 12 (d). As has been
demonstrated with analytic test functions, implement-
ing gradient information inside of GA runs greatly
improves the convergence rate of the MOGA search
and much better Pareto optimal sets could be iden-
tified with a smaller number of function evaluations.
Furthermore, one can see in this test that Kriging mod-
els can provide fairly accurate gradient information at
least to assist in the robust search techniques used in
the hybrid GAs.

6.4 15-Dimensional Design Problem with QSP-UA

The integration of approximation methods with
GAs results in a very robust design optimization
framework suitable for typical MDO problems. The
technique can effectively be automated and easily
adapted to a variety of problems. The bottleneck of
the procedure, however, occurs when the mesh per-
turbation routine fails for configurations requiring a
large deviation from the baseline configuration. In ad-
dition, the amount of work required to include complex
geometry features such as engine nacelles, pylons and
diverters, in this environment is rather large. Full au-
tomation of the procedure in the context of large geom-
etry perturbations can be achieved with unstructured
mesh re-generation and perturbations procedures. If
the geometry changes by an amount that would de-
crease the quality of the volume mesh to the point that
it becomes unusable, the mesh can simply be regener-
ated from scratch. Several measures of mesh quality
are readily available in the literature.

The 15-dimensional design problem presented before
(with QSP107) was repeated with the QSP-UA en-
vironment to demonstrate this new, fully automated,
design framework. Function evaluations are computed
using the Centaur mesh generation system, the AERO-
SURF geometry engine, and the AirplanePlus flow
solver. Typically, four levels of adaptation are used
in each of the function evaluations with mesh sizes in
the neighborhood of 3 million nodes.

A total of 140 sample points were initially com-
puted using a Latin Hypercube sampling distribution.
The results of these calculations are used to construct
Kriging response surfaces which are then fed to our
multiobjective GA formulation to arrive at the Pareto
front for this problem. The results are very similar to
those obtained with the QSP107 multiblock structured
approach: the CFD validations of the approximated
points on the Pareto front once again appear to show
reasonable agreement in the coefficient of drag, but
show discrepancies for the calculation of the sonic
boom. Once again, this is evidence of the fact that
the boom design space is much less smooth than that
of the coefficient of drag and, therefore, either larger
number of sampling points, or more concentrated sam-
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pling locations are needed to improve the accuracy of
the fit. Additional iterations with a trust region ap-
proach (not computed here) should provide the added
accuracy to achieve closer agreement between the com-
puted and estimated Pareto fronts.

7. Conclusions
The following conclusions can be drawn from the

work in this paper:

• Integrated tools for the analysis of sonic boom
and aerodynamic performance based on fully non-
linear CFD analyses for both structured and un-
structured meshes (QSP107, QSP-UA) have been
developed and validated in their applicability to
design optimization of low-boom supersonic busi-
ness jets.

• The applicability and efficiency of approximation
model-based GAs has been demonstrated.

• A new hybridization strategy implementing gra-
dient information inside of the GA optimizations
was proposed and its advantage to accelerate the
GA search procedure has been validated using
some preliminary test cases.
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(a) Mesh after first adaptation with number of mesh nodes=562,057

(b) Mesh after second adaptation with number of mesh nodes=1,028,577

Fig. 6 Unstructured Mesh Adaptation for 15-Dimensional SBJ Design Problem
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(c) Direct Cokriging Model with 9 Sample Values and their
Gradients
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(d) Indirect Cokriging Model with 9 Samples and 18
Additional Values Obtained from Gradients

Fig. 7 Validation Problem. CD Cokriging Models for 2-D SBJ Test Case Using Two Design Variables:
Wing Position and Fuselage Radius at 50% Location
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(c) Cokriging Model with 5 Sample Values and their
Gradients
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(d) Cokriging Model with 5 Samples and 10 Additional
Values Obtained from Gradients

Fig. 9 Boom Overpressure Cokriging Models for 2-D SBJ Design Problem Using Two Design Variables:
Fuselage Radii at 10% and 20% Locations

16 of 21



2.5 3 3.5 4 4.5
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x2

x1

True Optimum
1st Sample Set
2nd Sample Set
3rd Sample Set

(a) Sample Points Over 3 Design Iterations and Optimum
Design Evolution With Contours from CFD Calculations

2.5 3 3.5 4 4.5
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

x2

x1

Estimated Optimum
True Optimum
Sample Points

(b) 1st Design Cycle Results with Cokriging Approximation
Contour Plot

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
2.2

2.7

3.2

x2

x1

Estimated Optimum
True Optimum
Sample Points

(c) 2nd Design Cycle Results with Cokriging Approximation
Contour Plot

2.8 3 3.2

2.2

2.4

2.6

x2

x1

Estimated Optimum
True Optimum
Sample Points

(d) 3rd Design Cycle Results with Cokriging Approximation
Contour Plot

Fig. 10 Boom Overpressure Optimization Results using Indirect Cokriging Method for 2-D SBJ Design
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Fig. 11 Validation of Gradient Enhanced micro-GA
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Fig. 12 Multiobjective Optimization Results
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Fig. 13 Configuration Comparison between Final and Baseline Designs (red:baseline, green:Desinged)
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Fig. 14 Results of MOGA using QSP-UA analyses and a Kriging approximation model.
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