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This paper compares the computational cost and robustness of a number of different
algorithms for the sizing and optimization of aircraft. In particular, three classes of aircraft
will be investigated, each with a different level of propulsion system complexity. The first is
a conventional turbofan-powered aircraft. A lithium-air battery-powered aircraft, incorpo-
rating both energy and power constraints is second. Third is an aluminum-air/lithium-ion
battery powered aircraft, which switches to different energy systems depending on the
overall propulsion system power requirements. Several different aircraft design problem
formulations will be considered for each of these aircraft. Sizing loops as well as deter-
mining constraints such as fuel margin by exposing them to the optimizer will both be
explored. Results suggest that integrating surrogate models to inform the sizing loop leads
to substantially fewer function evaluations than a simple successive substitution, while
maintaining a relative insensitivity to a poorly-informed initial guess that optimizer-sizing
algorithms lack.

Nomenclature

AoA angle of attack
AR aspect ratio
E energy
Esp specific energy
faux auxiliary power fraction
h sizing constraint
m mass
nopt number of optimizer calls (including finite difference steps)
nsize number of sizing loop calls
P power
Psp specific power
R range
SFC specific fuel consumptions
t
c thickness to chord ratio
V velocity magnitude
W Weight
x optimization variables
y sizing variables
WL wing loading
λ taper ratio
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1,2,3... segment number
i initial
f final
j iteration number
prim primary
out parameter returned by the mission solver

I. Introduction

Aircraft conceptual design is an inherently iterative process due to the fact that many of the methods
employed do not have an analytical solution.1 Additional design requirements increase the computational
cost of these iterations, especially in the case of unusual aircraft configurations; traditional tube-and-wing
designs rely heavily on the use of empirical correlations for initial design performance, while more unusual
designs with less data available require the direct use of expensive physics-based tools in order to properly
estimate aircraft performance.2 This makes each aircraft iteration much more computationally expensive;
the designer should therefore reduce the number of sizing iterations to as few as possible. Furthermore,
for extremely unconventional cases, the designer may have little-to-no intuition as to what a “good” initial
guess for the aircraft might look like. While the cost of introducing higher-fidelity analysis may be mitigated
through the use of clever MDO architectures, the lower specific energy of battery systems has a cascading
effect on the mass, and by extension, structural size of the aircraft.3,4 Properly evaluating the propulsion
system is essential to the sizing process of futuristic electric aircraft, as even generous estimates of technology
improvements still falls well short of what one may obtain with fossil fuels.5 To illustrate some of the
difficulties, taking the Breguet Range Equation.

R =
V

SFC
∗ L
D

∗ ln(
Wi

Wf
) (1)

and rearranging for fixed range

Wi

Wf
= exp(

R ∗ SFC
V

∗ 1
L
D

) (2)

demonstrates that the required “fuel” weight (Wi−Wf ) is proportional to the exponential of the effective
specific fuel consumption of the aircraft (which specific energy is in turn inversely proportional to). Analogous
equations also exist for electric aircraft, but the adverse effect on total weight is more pronounced, due to
the fact that overall vehicle weight does not decrease during flight.6 Even the most optimistic estimates for
battery capacity fall well short of fossil fuel specific energy, as seen in Table 1.

Table 1: Energy Source Comparison

source specific energy (W-h/kg) (approximate) specific power (kW/kg)

jet fuel 12,000

lithium-air battery 2,000 .66

aluminum-air battery 1,300 .2

lithium-ion battery 200 1

Table 1 lists the battery configurations from most optimistic (lithium-air, which is an area of active
research) to least optimistic (lithium-ion, which is currently used in automobiles). Aluminum-air batteries
are currently available with these power/energy characteristics, but have serious limitations such as low
specific power and non-rechargability. Even the most optimistic battery choice has 1/6 the specific energy of
current propulsion systems, while current widely-available technology has a specific energy 1/60th that of jet
fuel. Thus, configuration improvements, such as improving L/D or reducing the structural weight are crucial
to implementing these “green” aircraft with any significant amount of range, which may necessitate the use of
higher fidelity methods. Furthermore,because this significantly increases the range factor, it also means that
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the overall aircraft weight will be more sensitive to design choices, making it more important to “nail down”
the configuration early on in the design process. This means the introduction of higher fidelity methods in
the conceptual design stage could have a much bigger impact. Therefore, efficiently determining the required
size of the vehicle is critical in the development of these futuristic aircraft concepts. The generalized problem
to be solved in this paper is as follows:

minf(x) (3)

s.t. g(x) > 0 (4)

h(y) > 0 (5)

h(y) = (y − yout)/y (6)

y > 0 (7)

where x is a set of design variables, f is the objective, and y is a set of terms called “sizing variables,”
which include parameters such as vehicle mass, battery energy, as well as propulsion system power. h(y)
is the vector of constraints associated with each y. For a modern commercial aircraft, y could correspond
to the gross takeoff weight of the vehicle while h(y) could correspond to a fuel margin constraint. Electric
aircraft would include requirements such that the battery state of charge remains positive, and the power
requirements of the mission do not exceed the maximum power output of the battery. Note that in the
context of this paper, a “sizing evaluation” refers to when vehicle’s geometry and weight is defined and
runs the mission based on the inputs (x,y). This paper will investigate the computational efficiency and
robustness of a number of aircraft-sizing schemes applied to three different aircraft classes. First, a con-
ventional turbofan-powered aircraft will be investigated, with a single sizing variable of y = GTOW. This
conventional case will be used as a benchmark, and is most representative of aircraft built today. A drawing
of a conventional aircraft using OpenVSP can be seen below.7

Figure 1: Conventional Turbofan-Powered Aircraft

The second aircraft is a lithium-air battery powered design; details of the analysis and design procedure
can be seen in reference 8. This particular battery chemistry has an estimated specific energy of 2000 W-
h/kg, with a specific power of .66 kW/kg. Battery technology here is considered futuristic, indicative of
what one might call a “best case scenario.” The sizing variables for this configuration can be seen below,
along with a CAD drawing of an example aircraft (with a box representing the required lithium-air battery
volume) in Figure 2.

y = [m,Eprim, P ] (8)
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Figure 2: Lithium-Air Aircraft

The most-complicated case is an aluminum-air powered aircraft, augmented with a lithium-ion battery
for high-power operation. A detailed breakdown of the propulsion system characteristics can seen in reference
9; in summary, the aircraft is powered by an aluminum-air battery which has a high specific energy (1300
W-h/kg), but low specific power, along with a lithium-ion battery (which has a higher specific power, but
much lower specific energy). The lithium-ion battery meets a specified fraction of the power requirements
of the vehicle, and activates whenever the maximum power output of the aluminum-air battery is exceeded.
The sizing variable vector y for this configuration can be seen below.

y = [m,Eprim, Eaux, P ] (9)

Technology used is representative of batteries available today, with the caveat that current technology
does not allow for recharging the aluminum-air battery, although the models include estimated costs for
recycling the battery after discharge. The aluminum-air design possesses the most complex propulsion-
system investigated here, and is thought to be the most representative of the power/energy tradeoffs of
next-generation hybrid-electric vehicles. A CAD image of an example aircraft from the previous paper can
be seen in Figure 3(which includes the required volumes of the energy subsystems within the wing, where
blue is water, red is a lithium-ion battery, and yellow is an aluminum-air battery).9
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Figure 3: Aluminum-Air/Lithium Ion Powered Aircraft

Section II details the different sizing methods employed in this study, while Section III contains a summary
comparing their computational cost (in terms of number of function evaluations), using a variety of different
algorithms for a full optimization case.

II. Methodology

All of the aircraft analysis and design/optimization studies will utilize SUAVE, an open-source design
tool.10 SUAVE was built to ensure compatibility with any number of exotic energy systems, and thus, is
well-suited for studies such as this. A more recent paper highlighted SUAVE’s flexibility in formulating
optimization problems which this paper will heavily leverage.11 All optimization cases were handled using
SUAVE’s pyOpt optimizer wrapper, which in turn called SNOPT (a Sequential Quadratic Programming
method).12,13 This paper uses two different aircraft sizing procedures, comparing their robustness and speed
within an optimization problem for the three different aircraft classes.

One sizing procedure is termed “optimizer-sizing” within the context of this paper. The algorithm can
be explained as follows; the sizing variables are appended to the optimization problem with the relevant
constraints handled by the optimizer to ensure aircraft consistency, i.e. equation 3 is replaced with equation
10, while equation 5 is handled by the optimizer as shown in equations 10-14.

minf(x, y) (10)

s.t. g(x) > 0 (11)

h(y) > 0 (12)

h(y) = (y − yout)/y (13)

y > 0 (14)
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This approach tends to be favored by optimization algorithm developers, as it is often more efficient to
allow the optimizer to search along an infeasible region, rather than solve a large number of subproblems.14

One disadvantage is that, in the event that the optimization fails to converge to a feasible point, the designer
gains no new knowledge of the design space. Additionally, it was found in a previous paper that, for
hybrid-electric aircraft, formulating the problem in this manner caused difficulties in satisfying the sizing
constraints.15 As the problem becomes more complex, the sizing variables may become loosely coupled, and
an abundance of local minima arises, causing difficulty even for generally reliable optimizers. Nonetheless,
this paper explores this “optimizer sizing” algorithm, comparing its effectiveness (in terms of both robustness
as well as computational cost, in number of function evaluations) as the propulsion system complexity
changes. Another formulation is to solve the subproblem for y as a function of x, as shown in equations
15-18.

minf(x) (15)

s.t. g(x) > 0 (16)

solve for y s.t. − ε < h(y) < ε (17)

h(y) = (y − yout)/y (18)

This “sizing-loop” method is the general formulation used by most aircraft manufacturers as well as
students in conceptual design. It has a number of advantages, in that, in the problems considered here, any
optimal configuration would have an h(y) = 0. Thus, the optimizer may be less likely to become “stuck”
in local minima (at least those defined by the sizing variables). Furthermore, as each optimizer iteration is
properly sized, the designer can build some intuition about the sensitivity of the aircraft to input variables
as the optimization problem progresses. A major disadvantage is a potential loss in solution accuracy; the
solution can only be converged to a certain value, practically speaking, before accumulated numerical errors
prevent further convergence (for the aluminum-air aircraft, this was found to begin occurring at a sizing
tolerance of 1E-5). This means that the finite differencing steps from the optimizer should be increased to
ensure that they are outside of the optimizer bounds; the users guide to SNOPT recommends a step size
≈ (tol)1/2.13 A basic information tree using these sizing variables can be seen in Figure 4 below. Note that
this particular algorithm is called at every optimizer iteration.

Sizing Loop Algorithm

1

size aircraft

run mission

evaluate 
constraints

converged if 
-ε<h<ε

initial guess
y

return objective 
+constraints to 
optimizer

h,yout

If converged, continue,
else, find new y

Figure 4: Sizing-Loop Algorithm
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A common method used to solve this inner-loop problem is successive substitution, where yout is set as a
new y, and the loop iterated on until the guesses converge. This is a fairly slow, but robust method. Solving
this problem is relatively simple for a single variable, but becomes more complicated as more sizing variables
are added especially when they are all loosely coupled. For example, for the aluminum-air aircraft case,
the auxiliary battery often only consumes a small amount of the total energy, yet accounts for a substantial
fraction of the power; thus, using total energy as a sizing variable results in highly infeasible aircraft, and
needs to be handled separately. To illustrate, Figure 5 compares the value of the sizing constraints at each
successive substitution iteration
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Figure 5: Convergence Results for Higher-Dimensional y

Figure 5 corresponds to an aluminum-air/lithium-ion battery powered aircraft. As the solution proceeded
(for fixed x), there was significant oscillation in the error; furthermore, the different sizing errors were out of
phase with each other, which significantly slowed the convergence rate Furthermore, to converge all of the
required parameters, some of the other parameters may become over-converged, which, due to the higher
range factor, may affect the design enough to result in a serious reduction in gradient accuracy. One method
to reduce the number of sizing iterations is to use Newton-Raphson (NR), where the algorithm in Figure 4
is finite-differenced in y to obtain the Jacobian, and the new y value becomes

yj+1 = yj − (J−1
j ) ∗ h(yj) (19)

Newton-Raphson is known to exhibit quadratic convergence near the solution, which can significantly
reduce the number of function evaluations. Thus, NR methods in the paper will use successive substitution
until h(y) is converged to within 5 % for all values of h, then use NR to accelerate convergence. Additionally,
depending on the sizing tolerance, newton-raphson, due to its quadratic convergence, may cause a particular
sizing iteration to become overconverged, introducing numerical noise to the outer loop optimizer. Another
method to increase code speed is to use Broyden’s method with the Sherman-Morrison formula to directly
update the inverse of the Jacobian.16

J−1
j+1 = J−1

j +
dy − J−1

j dhdyT

dyTJ−1
j dh

dyTJ−1
j (20)

where
dy = yj+1 − yj (21)
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and

dh = h(yj+1) − h(yj) (22)

This reduces the number of function evaluations by eliminating the need to need to finite difference to form
the Jacobian at each iteration (which can become expensive as the dimension of y increases). However,
this update is also less robust, and the Jacobian may need to be reinitialized to ensure convergence. A
demonstration of these methods “in action” can be seen in Figure 6, which compares the mean squared error
of h at each sizing loop iteration for the aluminum-air reference guess for successive substitution, Newton-
Raphson, and Broyden’s Methods. Gaps in the iterations correspond to finite-difference steps to build the
Jacobian
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Figure 6: Convergence Results for higher-dimensional y

Figure 6 shows that, using these methods can solve the sizing loop problem considerably faster than simple
successive substitution. However, the user should be careful, in that, due to their quadratic convergence,
they may overshoot the solution tolerance (which here is 1E-4), which may cause significant problems when
run with gradient-based optimizers. In this instance, the convergence jumped from 1E-3 to 1E-5 in a single
iteration. This is a less critical issue when one uses global-optimization techniques, as accurate gradients
are not nearly as important there. Figure 5 also shows that properly informing the initial guess for y is a
crucial aspect of increasing code speed. To that end, a number of different techniques were used to reduce
the number of sizing loop iterations, thereby improving the optimization efficiency. One easy way to increase
code speed (which is effective for gradient-based optimizers), is to tabulate the converged solutions, and,
when the input variables x are “close” to a tabulated value use the nearest converged y(x) as an initial guess.
However, farther away from the tabulated data, one should use other methods to determine a “good” initial
guess for the y values. To that end, a variety of regression algorithms from scikit-learn were evaluated to
determine their effectiveness in finding a good guess for the initial y in the sizing loop.17 Details can be seen
in the Results section of this report.

III. Results

Because the aluminum-air aircraft was the most complicated case, training data from a full optimization
case was generated and used to evaluate several regression algorithms to determine a “good” initial guess.
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This aircraft has 4 sizing variables as seen in equation 9, along with twelve input variables shown in Table
2. Note that each of the aircraft cases in the report uses the same design variables (aside from faux, which
is unique to the aluminum-air aircraft), although their bounds differ from case to case.

Table 2: Aluminum-Air Design Variables

variable Lower Bound Upper bound

faux 0 1.

Wing Loading ( kg
m2 ) 200 800

Thrust Loading .05 .6

Fan Pressure Ratio 1.1 2.4
t
c .07 .2

Vclimb1(m
s ) 50 140

Vclimb2(m
s ) 50 140

Vclimb3(m
s ) 50 140

hcruise(ft.) 20,000 30,000

hfrac,climb1 .1 1

hfrac,climb2 .2 1

hfrac,descent1 .1 1

As the optimization process proceeded, the algorithm was trained on iteration 1 through i, and tested on
iteration i+1, where the norm of the error was output. In other words

for j in converged results

train on 1:j-1

test on j

(23)

Some statistics were then calculated to compare the effectiveness of each algorithm over the entire dataset.
Table 3 compares some representative linear-regression algorithms (many others were tested, but these proved
to be the most effective on this set of data). Note that, the mean, median, and maximum errors were the
most significant metrics for algorithm performance. The mean and median both represent the performance
the algorithm is most likely to have when evaluating a particular optimization point, while the maximum
error, if too high (meaning a poor initial guess), could cause the sizing loop to diverge, which could result
in a breakdown of the optimization process (when run in-the-loop).

Table 3: Aluminum-Air Aircraft Outer Loop Performance (Linear Regression Algorithms)

algorithm mean err median err std err min err max err

SVR (RBF Kernel) 0.830 0.432 1.576 0.070 6.935

Gaussian Process 0.462 0.300 0.433 0.025 2.297

Table 0.784 0.062 2.183 0.001 11.166

Kneighbors (5), distance weighted 0.454 0.131 1.037 0.006 6.505

In addition, several ensemble methods were tested on this dataset. Note that, the ensemble methods are
stochastic, so the results will vary slightly each time the method is run. However, after running each several
times, it was found that the results in Table 4 were representative of the overall performance of each method.
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Table 4: Aluminum-Air Aircraft Outer Loop Performance (Ensemble Algorithms)

algorithm mean err median err std err min err max err

Random Forest 0.403 0.293 0.402 0.003 2.110

Gradient Boosting 0.324 0.147 0.395 0.002 1.898

Bagging Regressor 0.400 0.361 0.366 0.008 1.721

Extra Trees Regressor 0.316 0.137 0.380 0.009 1.901

For these cases, the simple Table lookup model possessed the lowest median error, but a high maximum
error (and with it, a higher standard deviation), then the other methods. The max error occurs when the
optimizer takes large steps, which tends to happen early on in the optimization process. Compared to the
table-lookup method, K Nearest Neighbors (KNN) has lower maximum, mean, and median errors, than
the Table-Lookup method. Gaussian Process Regression (GPR) reduced the maximum error by a factor of
three, but with lower average accuracy. This is indicative of a more robust, but less accurate algorithm.
The ensemble methods, on the other hand, all appear to maintain the robustness of GPR, with the addition
of increased accuracy, with Extra Trees edging the other algorithms out in terms of performance. With
the algorithm performance estimated for the most-complicated case, the table-lookup, K Nearest Neighbors
(chosen to have distance-weighted coefficients, with 5 neighbors), Gaussian Process Regression, and Extra
Trees were evaluated and compared for the three aircraft classes. Each of these three aircraft classes were
also evaluated for the three inner-loop methods (successive-substitution, newton-raphson, and broyden), as
well as optimizer sizing. Sizing Loop results for the regional jet case are shown in Tables 5-7. Note that,
because of numerical noise (sizing was converged to h=1E-4), each of these algorithms may have resulted in
a different number of outer loop iterations. Thus, nsize

nopt
is considered the best metric for evaluating algorithm

performance, as it is the average number of sizing calls per optimization iteration.

Table 5: Regional Jet Optimization Results (Successive Substitution)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Successive Substitution Same Point 406 57 8.8 83,282

Successive Substitution Table 149 46 3.2 83,454

Successive Substitution KNN(5) 150 46 3.3 83,454

Successive Substitution GPR 150 46 3.3 83,454

Successive Substitution Extra Trees 149 46 3.2 83,457

Table 6: Regional Jet Optimization Results(Newton-Raphson)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Newton-Raphson Same Point 312 145 6.8 83,259

Newton-Raphson Table 177 46 3.8 83,252

Newton-Raphson KNN(5) 238 46 5.2 83,274

Newton-Raphson GPR 220 46 4.8 83,267

Newton-Raphson Extra Trees 229 46 5.0 83,271

The regional jet case was interesting, in that, the problem was simple enough that the optimization case
converged after only ≈ 5 major iterations, meaning that the regression algorithms only ran for one or two
iterations (three major iterations was chosen as the threshhold before these regression were run, to prevent
extrapolation to extremely unphysical results). Thus, the extra complication in setting up the more elaborate
algorithms may not necessarily be cost-effective in a more applied setting. Additionally, the more exotic
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Table 7: Regional Jet Optimization Results(Broyden)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Broyden’s Method Same Point 312 46 6.8 83,261

Broyden’s Method Table 211 57 3.7 83,255

Broyden’s Method KNN 205 57 3.6 83,249

Broyden’s Method GPR 196 57 3.4 83,251

Broyden’s Method Extra Trees 269 68 4.0 83,321

loop-evaluation methods (Newton-Raphson and Broyden) proved to be somewhat more computationally
expensive; this is because they had a tendency to “overshoot” the solution when SNOPT performed the
finite difference iterations, resulting in less accurate gradients. Furthermore, because most of the sizing
loop iterations were taken during optimizer finite difference steps, the initial guess tended to be “near” the
solution value (for the regression methods). Thus the extra sizing loop iterations to construct the Jacobian
may actually be slower than successive substitution for a given step. Table 8 shows the results for when the
y vector (in this case, GTOW) is moved to the outer loop optimization, with h added as a constraint. The
uninformed initial guess uses the default GTOW from the sizing loop problem. Informed optimizer sizing
uses the sized GTOW from iteration 1 of the sizing loop problem as the initial GTOW in the optimization
problem.

Table 8: Regional Jet Optimization Results (Optimizer Sizing)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

uninformed optimizer sizing N/A 254 254 1 82,513

informed optimizer sizing N/A 350 350 1 82,513

In this particular case, the uninformed case converged more quickly, as the optimizer used steepest descent
to rapidly move through the infeasible region. The informed case, on the other hand, tended to hug the
fuel margin constraint line, increasing the number of optimizer iterations, but converges to the same result.
Tables 9- 11 show results for the more complicated lithium-air-powered aircraft.

Table 9: Lithium-Air Jet Optimization Results (Successive Substitution)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Successive Substitution Same Point 3,112 326 9.55 131,272

Successive Substitution Table 192 62 3.1 134,208

Successive Substitution KNN(5) 171 50 3.4 134,277

Successive Substitution GPR 206 62 3.3 134,443

Successive Substitution Extra Trees 197 62 3.1 134,231
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Table 10: Lithium-Air Jet Optimization Results(Newton-Raphson)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Newton-Raphson Same Point 3,894 350 11.1 130,918

Newton-Raphson Table 765 134 5.7 131,210

Newton-Raphson KNN(5) 2,632 640 4.1 133,056

Newton-Raphson GPR 1,052 218 4.8 130,944

Newton-Raphson Extra Trees 3,415 74 5.7 132,951

Table 11: Lithium-Air Jet Optimization Results Summary(Broyden)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Broyden’s Method Same Point 2,845 314 6.8 131,371

Broyden’s Method Table 867 182 3.7 131,101

Broyden’s Method KNN 422 112 3.6 133,419

Broyden’s Method GPR 214 62 3.4 133,715

Broyden’s Method Extra Trees 714 170 4.0 130,969

The lithium-air case demonstrates the “overshooting” problem with Newton-Raphson, as it took a sub-
stantially larger number of optimization problem calls to converge than the other cases. Additionally, from
inspection, none of the initial step methods (Table, KNN,GPR, or Extra Trees) appears to perform signifi-
cantly better than the others. Note that, like the regional jet case, the lithium-air jet optimization problem
was found to converge within only a few optimizer iterations (at least for successive substitution), so the
effectiveness of each algorithm is difficult to compare. Nonetheless, for successive substitution, the overall
number of sizing calls was lower for each of these methods by an order of magnititude than by starting
from the same initial y values. Broyden’s method mitigates some of the numerical noise issues seen in
Newton-Raphson, but still appears to be marginally outperformed by the successive substitution methods
(on average). Optimizer sizing results can be seen in Table 16.

Table 12: Lithium-Air Jet Optimization Results (Optimizer Sizing)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

uninformed optimizer sizing N/A 2,642 2,642 1 137,735

informed optimizer sizing N/A 1,262 1262 1 136,015

For this more complicated case, the sizing-loop methods, for the most part, tend to outperform the
optimizer-sizing architecture. The optimizer was found to have some difficulty determining the sizing con-
straints, as energy, power, and weight are all coupled in an aircraft; therefore, solving the subproblem was
found to be more efficient. Furthermore, a fully-sized initial guess resulted in a faster optimization pro-
cess, as the coupling of the sizing variables proved troublesome for the optimizer. Finally, results for the
aluminum-air aircraft can be seen in Tables 13-15.
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Table 13: Aluminum-Air Optimization Results(Successive Substitution)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Successive Substitution Same Point 95,849 4,396 21.8 44,976

Successive Substitution Table 7,227 1,343 5.4 45,040

Successive Substitution KNN(5) 11,838 2,409 4.9 45,134

Successive Substitution GPR 3,415 524 6.5 48,454

Successive Substitution Extra Trees 10,555 2,045 5.2 44,979

Table 14: Aluminum-Air Optimization Results(Newton-Raphson)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Newton-Raphson Same Point 11,678 433 27.0 48,221

Newton-Raphson Table 17,398 2,357 7.4 45,412

Newton-Raphson KNN 11,208 1,695 6.6 48,330

Newton-Raphson GPR 3,652 550 6.6 47,309

Newton-Raphson Extra Trees 28,353 4,580 6.2 45,016

Table 15: Aluminum-Air Optimization Results(Broyden)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

Broyden’s Method Same Point 10,562 328 32.2 45,754

Broyden’s Method Table 14,169 3,194 4.4 44,669

Broyden’s Method KNN 1,582 225 7.0 48,504

Broyden’s Method GPR 3,292 342 9.6 50,460

Broyden’s Method Extra Trees 1,620 173 9.4 50,435

Table 16: Aluminum-Air Jet Optimization Results (Optimizer Sizing)

loop evaluation initial step nsize nopt
nsize

nopt
landing weight (lbs.)

uninformed optimizer sizing N/A 11,868 11,868 1 66,571

informed optimizer sizing N/A 5,714 5,714 1 43,804

The aluminum-air aircraft case, like the lithium-air aircraft, had an order of magnitude reduced com-
putational cost when not starting from the same point. Additionally, solving the sub-problem proved more
troublesome for the inner-loop solver, due to the increased complexity (as seen in Figure 6). Furthermore,
numerical noise became a more significant issue here, which substantially increased optimization time com-
pared to the lithium-air case; note that for each of these algorithms, the optimizer design variables moved
very close to the solution output (generally at ≈ 1,000 optimization calls (which included finite difference
steps)), but was unable to satisfy the optimality conditions, so it spent a significant amount of time searching
for better points. Furthermore, for some of the cases, Broyden’s method struggled to fully converge, (due to
accumulated numerical error), which significantly increased the number of sizing-loop iterations. This may
be mitigated by using finite differencing to reinitialize the Jacobian.

The sizing-loop algorithms tended to be the most robust, in that, unless the optimizer-sizing algorithm
was started with a “good” initial guess, the optimizer was sometimes unable to converge to a feasible solution

13 of 16

American Institute of Aeronautics and Astronautics



(or at least one “better” than an initial sized result). However, when starting from a fully-sized guess, the
optimizer-sizing algorithm was usually the fastest approach, and yielded the best results. Nonetheless,
determining a good initial guess for y may be quite complicated, especially when y contains more than 2
parameters. As a result, sizing-loop methods were preferred for these types of problems, as the optimizer
had trouble solving the consistency subproblem without a feasible initial guess. Note that, in some cases,
it was difficult to consistently compare the effectiveness of determining a good initial guess for the outer
loop problem, as the numerical error in the sizing loop process sometimes caused the optimizer to “wander”
in certain regions of the design space. A summary plot of the various regression methods using successive
substitution can be seen in Figure 7, along with the optimizer sizing results. The “Same Point” step is
omitted, to see the spread more clearly. Figure 8 shows the final optimum aircraft weights plotted vs. the
ratio of sizing evaluations to optimizer iterations, to more easily compare their performance.
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Figure 7: Aluminum-Air Results Summary
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Figure 8: Aluminum-Air Results Summary

In summary, for gas-powered aircraft, ptimizer convergence vs. the use of sizing loops appears to make
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relatively little difference in computation time. For aircraft with a single battery (with power and energy
requirements), using an informed initial guess within a sizing loop can save an order of magnitude in com-
putational cost over both an uninformed guess as well as using an optimizer. On the other hand, for aircraft
with multiple energy systems, there is an extra order of magnitude in computational cost due to the difficulty
in solving the subproblem. To illustrate, a plot of the convergence for the three aircraft cases can be seen in
Figure 9
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Figure 9: Convergence vs. Number of Sizing Parameters

Both a single sizing variable (indicating a fossil fuel-powered aircraft), as well as a three sizing vari-
able (indicating a battery-powered aircraft) show log-linear convergence when using successive substitution.
Including an additional battery system causes significant oscillation in convergence, greatly increasing com-
putational time. This is because, when one energy system requires more energy at a given iteration, the
other requires less, leading to a back-and-forth oscillatory impact, where convergence in one system hurts
convergence in the other. Using the optimizer to converge this case is somewhat more effective when starting
from a well-posed initial guess; however, determining a good initial guess may be nontrivial. In all cases,
this leads to an additional order of magnitude computational time over the single energy system case.

IV. Conclusions

Results show a number of trends for these methods. Firstly, that sizing-loop methods appear to be
less sensitive to an uninformed initial guess than optimizer sizing, indicating that, solving the sub-problem
within each major iteration may be a more robust way of solving an aircraft design/optimization problem.
However, due to computational convergence limits, they must be run to a lower sizing tolerance, making
them more prone to becoming stuck in local minima. Starting the optimization case with a fully sized
vehicle appears to result in a lower computational cost and is less sensitive to local minima. Using surrogate
methods to inform the initial guess within the sizing loop methods appears to recover much the code speed
of the optimizer-sizing cases, while maintaining robustness. Future work will explore some of these methods
using global optimization methods, along with further investigation of inner-loop zero-finding methods.
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