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The accuracy of low-fidelity models of turbulent flow such as those based on the Reynolds
Averaged Navier–Stokes (RANS) equations can be questionable, especially when these
models are applied in situations different from those in which the models were calibrated.
At present, there is no general method to quantify structural uncertainties in such models.
Greater accuracy and a reliable quantification of modeling errors is much needed to expand
the use of affordable simulation models in engineering design and analysis. In this paper,
we introduce a methodology aimed at improving low-fidelity models of turbulence and
combustion and obtaining error bounds. Towards this end, we first develop a new machine
learning algorithm to construct a stochastic model of the error of low-fidelity models using
information from higher-fidelity data sets. Then, by applying this error model to the low-
fidelity result, we obtain better approximations of uncertain model outputs and generate
confidence intervals on the prediction of simulation outputs. We apply this technique to
two representative flow problems. The first application is in flamelet-based simulations
to model combustion in a turbulent mixing layer; and the second application is in the
prediction of the anisotropy of turbulence in a non-equilibrium boundary layer flow. We
demonstrate that our methodology can be used to improve aspects of predictive modeling
while offering a route towards obtaining error bounds.

I. Introduction

As computational approaches are increasingly used in analysis and design of engineering systems, quan-
tification of simulation errors and uncertainties are also becoming evermore relevant. These uncertainties can
broadly be classified into three categories: i) Randomness in simulation inputs or parameters, ii) Numerical
approximations, and iii) Inadequacies of the model in representing physical phenomena. In this work, the
third among the above-mentioned set, i.e., errors and uncertainties due to modeling or model-form uncer-
tainties are addressed. While many attempts have been made at investigating modeling uncertainties, most
of the work has focused on a) Parameterizing the model and evaluating the bounds in quantities of interest
as introduced by the parameters, or b) Bayesian averaging of multiple models or extensions therein. In the
present work, we introduce an alternate route and instead employ Machine Learning techniques to learn
the relationships between model prediction and reality under controlled conditions and this information is
exploited to guide a framework to estimate the modeling error in related applications. This technique is
developed and applied to specific applications involving turbulence and combustion.
Turbulence Modeling: Direct numerical simulations (DNS) of the Navier–Stokes equations is infeasible
for most flows of practical interest because of the requirement of resolving the wide range of length and time
scales of turbulence. Large Eddy Simulations (LES) offer the promise of significantly reduced cost, but the
cost benefit (when compared to DNS) is only marginal in wall-bounded flows. In engineering applications,
especially in high Reynolds number situations, the Reynolds Averaged Navier–Stokes (RANS) equations are
most prevalent, due to their relatively low computational requirements. However, the ensemble averaging
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process used to derive the RANS equations introduces additional correlations of fluctuating quantities that
have to be modeled. The closure of this system has been a topic of research over the past five decades,
and a myriad of turbulence models have been developed to do so. There is much interest in quantifying
inaccuracies in the closure of a turbulence model. Practitioners typically validate a specific turbulence
model with comparisons to specific flow configurations, and use intuition and experiments to extrapolate
the performance of a turbulence model to general flow situations. While often useful, there exists no formal
procedure for obtaining error bars around solution results. This problem is exacerbated when the turbulence
model is used in applications far from its designed flow regime, as errors can be large and less understood.
At present, most work in this area has focused on developing uncertainties in the coefficients of a turbulence
model and using Monte Carlo simulations to examine the effects of these uncertainties (for instance, Refs.
1,2), although some recent efforts (Refs. 3, 4) have attempted to address structural uncertainty in turbulence
models.
Turbulent Combustion Modeling: DNS of turbulent combustion is an even more expensive proposition
because of the additional need to resolve chemical time and length scales. In practice, simpler combustion
models are pursued, especially when used in conjunction with RANS models of turbulence. One such
model is the Flamelet Progress Variable Approach5 (FPVA) which assumes that chemical time-scales are
shorter than turbulence time-scales and hence the numerical solution of turbulent (and mixing) processes
can be performed separately from the chemical processes which are instead pre-computed and tabulated. In
comparison to detailed finite rate chemistry calculations which involve the solution of transport equations
for many species, the FPVA involves solving just three scalar equations (in addition to the mean flow
equations) and is thus computationally both less expensive and less stiff. Though FPVA models have been
successfully used in many engineering applications, the flamelet approximation is known to be inaccurate in
situations such as those involving auto-ignition and when chemical time-scales are not orders of magnitude
faster than the time-scales associated with the flow. There is, hence, great interest in quantifying modeling
errors resulting from flamelet approximations and its use as a combustion model. Prior work on uncertainty
quantification in combustion modeling has mostly focused on treating parametric errors in the chemical
kinetics (for instance, Ref. 6) and using Monte-Carlo or spectral projection techniques to propagate these
uncertainties to simulation outputs.

Quantifying turbulence modeling uncertainties using parametric variations has provided useful insight,
but ultimately they are limited as they only express the effects of errors in the parameters of the turbulence
model while not providing any information about errors in the form of the model. In this work, we use
supervised learning techniques to learn the relationships between selected outputs from low and high-fidelity
simulations. Using these results, a framework to estimate errors in computed low-fidelity solutions is de-
veloped, and we apply our methods to two example problems. The first example learns the error between
FPVA solutions and finite rate chemistry solutions, and uses the error model to improve the FPVA solution.
The second example uses a DNS flow solution of a flow over a bump to learn errors in the Reynolds stress
anisotropy due to the use of a linear eddy viscosity model. In both cases, a stochastic model is used to
provide error bars on relevant macroscopic quantities of interest.

The paper is organized into three parts : Section II introduces machine learning (ML) and our specific
algorithm; Section III uses the ML algorithm to learn output features in terms of specific input features and
Section IV demonstrates application of the trained algorithm in two sample cases involving combustion and
turbulence.

II. Supervised Learning Methodology

A. Machine Learning

In supervised learning, the algorithm is provided with a set of input feature vectors x1, x2, ...xn, and a
corresponding set of output feature vectors, y1, y2, ..., yn from which a model can be built. A simple example
of supervised learning is least-squares regression, in which a polynomial is fit to a data set. The feature
vector is constructed as 1, x, x2, ..., and the output, y, is assumed to be a linear combination of the features,
i.e. y = β0 + β1x + β2x

2.... The values βi are learned by multiplying the pseudo-inverse of the feature
matrix with the output vector. The least-squares method is an example of “parametrized” learning, in that
the relationship between the input and the output is assumed to be a function of a set of parameters which
are learned from data. In non-parametric regression, no such specific form is assumed, and models freely
conform to input data. Non-parametric techniques are much more flexible in the functions they can fit, in
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that they make no assumptions about the form of the relationship between the input and output data. A
simple example of non-parametric regression is nearest neighbor regression, which predicts the output at x
to be equal to the output of the closest training data location. It is clear that given enough data, nearest-
neighbor regression will provide a prediction close to the truth, though “enough data” may be quite large
and it may perform significantly worse if the training data set is small. Other non-parametric techniques are
much more sophisticated, such as Gaussian processes,7 kernel regression,8 and locally-weighted regression.9

B. Use of Machine Learning

Given the results of a high-fidelity model and a low-fidelity model, we apply machine learning algorithms to
learn the relationships between the model discrepancy in terms of selected flow features. More specifically,
we split this process into two pieces:

1) We obtain an estimate of the error in the low-fidelity model based solely on its local features. These
features could be, for instance, mass and mixture fractions in a combustion simulation. Applying this model
gives an estimate of the error in a quantity of interest (for instance, the enthalpy of the mixture) at each
point in the flow.

2) These individual errors may be highly correlated between two locations close to each other in the
physical domain, and hence we define a model to describe the correlations among local uncertainties, as
ignoring these correlations may significantly under-estimate the true macroscopic error.

Our procedure starts with the identification of a set of local flow features, Y , in the high-fidelity model
whose value is to be learned, and a set of local flow features, X, in the low-fidelity model that are relevant to
predicting the value of Y . In theory, any number of input or output quantities could be used, but practically
as the number of features grows, the training procedure requires more data and becomes computationally
expensive. With this in mind, an ideal set of output features will be small in size, highly relevant to the
output quantity of interest, and capture the effects of different uncertainties. The input features should have
similar qualities.

C. Extended Kernel Regression

With a set of features in hand, and their values extracted from a data set, the next step is to choose a
supervised learning algorithm to train the local error model on the collected data. This model is a mapping
from the m input features to the n output features (Rm → R

n). We would like our learning algorithm to
be non-parametric, as we do not know the form of our uncertainty, and also to be stochastic, thus allowing
for the generation of error bars for uncertainty (as opposed to getting a single correction to the low fidelity
model). To meet these criteria, we have developed an extended form of kernel regression as our learning
algorithm. In kernel regression, one chooses a kernel function K(xi, xj) over the feature vectors of any two
data locations. This function defines the closeness of any two input locations xi and xj . In standard kernel
regression, the output y for an input location x is computed by a weighted sum over all of the data points,
i.e.

w̃i = K(x, xi)

wi =
w̃i

∑N
i wi

yj =

N
∑

i

wiyi,j , (1)

(2)

where x1, ..., xN are the input feature vectors for points 1, ..., N in the data set, and yi,j is the jth output for
the ith data point. Kernel regression has the advantage of being non-parametric, and thus it can represent
any smooth function given enough data. Since we do not have to assume a specific form of the function, we
can learn the true map from the input to the output.

Kernel regression was originally designed to model deterministic functions, and it gives a single prediction
for the output quantity rather than generating a probability distribution over possible values. We do not
expect that the mapping between our input and output features to be deterministic, and furthermore we
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are interested in learning the probability distribution over the true value of the output given the input. To
address this shortcoming, we use a modified version of kernel regression that generates probabilistic outputs.
As a simplification, we assume that the output has a multivariate Gaussian distribution given the input.
Furthermore, we assume that each output dimension is independent from the others. These assumptions may
not be generally true, but they simplify our analysis at the present time and will be relaxed in future work.
The normal prediction of kernel regression is treated as the mean of the Gaussian distribution, and a weighted
standard deviation of the data samples is treated as the standard deviation of the output. Mathematically,

w̃i = K(x, xi),

wi =
w̃i

∑N
i wi

,

µ(x)j =
N

∑

i

wiyi,

σ(x)j =

√

√

√

√

N
∑

i

wi(yi − µx)2 . (3)

where µ and σ denote the mean and standard deviation respectively. For a data point with feature vector x,
the above equations provide a prediction for the mean and variance of the output feature yj at that location.
Equations (3) are computed with each feature vector of the flow field which gives a prediction of the true
mean and standard deviation of each output feature at every grid point.

To illustrate this regression technique, assume we have the data set represented in Fig. 1 which has one
input feature and one output feature. In certain regions of the input feature, the output feature value has
high variability while in other regions the output feature is very predictable.
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Figure 1: An example data set that may be given to the extended kernel regression technique. The x-axis is
the value of the input flow feature, and the y-axis represents the value of the output flow feature.

By using extended kernel regression, this intuition can be made precise. We select a squared-exponential
as our kernel function,

K(xi, xj) = exp(−(xi − xj)
2/τ)

where τ is a “bandwidth” parameter representing the length scale of influence. For a specific value of τ ,
the mean and variance at each location in the input feature space can be computed using eqn. (3). It is
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important to choose a suitable value for τ ; a τ that is too large may miss local variations in the mean and
variance, while a τ that is too small may generate variations that are not present. To balance these trade-offs,
the value for τ is chosen by using k-fold cross-validation.10 Loosely, cross-validation successively leaves out
points in the data set, and the mean and variance at the held-out location is predicted. The τ which best
predicts these held-out training points (as measured by the sum of the log-likelihoods of the held-out data)
is chosen as the best value for τ . At the end of this procedure, we end up with a prediction for the mean
and variance of the output flow feature as a function of the input flow feature, as shown in Fig. 2, which is
used as the local error model.
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Data Samples
Predicted Mean

Mean + 2 σ
Mean − 2 σ

Figure 2: An example fit to the data set The x-axis is the value of the input flow feature, and the y-axis
represents the value of the output flow feature. The blue line represents the prediction for the mean of the
output flow feature prediction, while the red and green lines represent the mean plus and minus two standard
deviations respectively.

D. Spatial Correlation

The next step is to form a spatial correlation model. There are many possible choices for this, and we choose
two different methods for the two examples to follow in the next section. In the combustion example of the
following section, we use a Gaussian Process-type construction to form a covariance matrix Σ̃ over 50 evenly
spaced locations in the 1-D flow field. This covariance matrix is then scaled by the individual standard
deviations to create a joint covariance matrix for the full flow field, i.e.

Σi,j = σiσjΣ̃i,j , (4)

where, i and j are the ith and jth locations in the flow field. This joint distribution has marginal uncertainties
which match the individual uncertainties, but locations close to each other in the flow field are more likely
to deviate in the same direction. A vector of output features for the flow field is constructed by sampling
from this multi-variate Gaussian and error bars in the combustion simulation are generated by Monte-Carlo
sampling in this joint distribution.

For the RANS case which involves a 2-D flow field, sampling from a covariance matrix will be expensive.
Instead, we generate two standard normal random variables, and shift each point in the barycentric map by
that number of standard deviations relative to its own uncertainty. Each such realization gives a new output
map, and again, uncertainties in macroscopic quantities of interest are generated by sampling from this set
of maps.
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III. Application of Machine Learning to training data sets

To evaluate the feasibility and effectiveness of the techniques described in the previous sections, two
sample applications are attempted.

Example 1: Source term of reaction progress variable in FPVA

In the FPVA, the flame is modeled as an ensemble of one-dimensional laminar flames (or flamelets). This
allows for the thermo-chemical properties to be pre-computed using the solution of differential equations,
the results of which are stored in a tabulated form as a function of a limited number of scalars. In our ML
approach, we extract these scalars from a high-fidelity data set and use extended kernel regression to find the
appropriate output quantities as a function of those inputs. Using these “experimentally” generated values
for the table, inaccuracies in the FPVA table can be quantified. The high-fidelity data is a temporal DNS of
a reacting mixing layer using finite-rate chemistry (Ref. 11) Using the full data set to learn itself would not
be informative, and so rather than utilizing the full data set, a random subset of five thousand data points
were used as a training data set.

As an output quantity, we consider the rate of generation ˜̇ωC (see Appendix A) of the mass fraction of
H2O (the reaction progress variable) in the mixture. The FPVA looks up ˜̇ωC in terms of the mean mixture
fraction, the variance of the mixture fraction and the reaction progress variable (Z̃, Z̃ ′′2, and C̃, respectively).
Applying eqn. (3) using the training data gives an updated value for the table. We choose an anisotropic
squared-exponential as the kernel function,

K(xi, xj) = exp(−
∑

k

(xi,k − xj,k)2/τk) ,

where xi,k represents the kth element of the input vector xi, and τk is the bandwidth parameter for the kth

input variable (a total of three in this case). We use cross-validation to choose τk, and then apply eqn. (3)
to construct a look-up table using the mean prediction of the source term.

The extended kernel regression algorithm also gives a measurement of the uncertainty of each element in
the table, which is used to generate estimates of uncertainty in the prediction of the source term. Naively,
one may sample the Gaussian distribution for each element in the table and re-run the FPVA. However, this
may result in a noisy (spatially uncorrelated) prediction of the source term. In reality, the true source term
can be expected to be spatially smooth.

We account for these correlations by introducing a global covariance model superimposed on the individual
uncertainties. We assume that the source term for the flow field is generated from a multi-variate Gaussian,
where the marginal variance at each location is the uncertainty in the table value, but spatially closer
locations are more highly correlated than locations that are far from each other. We assume that any two
locations in the flow field are correlated according to

ρi,j = exp(−(yi − yj)
2/b) (5)

where y is the spatial location and b is a bandwidth parameter representing the length scale of correlation.
From eqn. (5), it can be seen that two locations very close together are almost perfectly correlated, while
locations far apart in the flow field are uncorrelated from one another. The full covariance matrix for the
flow field is computed as

Σi,j = ρi,jσiσj , (6)

where σi is the individual standard deviation determined using extended kernel regression. When coupled to
the FPVA simulations as described in the next section, samples from this multivariate Gaussian distribution
are used to generate the source term over the entire domain. This covariance matrix is formed over multiple
locations in the flow field, and a spline fit is used to interpolate the source term onto the rest of the grid
cells. Fig. 3 shows an example of this sampling process. In this figure, the dashed black line is the original
prediction for the source term from the FPVA table, and the solid black line is the mean of the prediction from
DNS data. The thin colored lines represent different samples from the multivariate Gaussian distribution
over the flow field. As will be explained in the next section, these different draws are communicated back to
the flow solver.
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Figure 3: Sample predictions of the chemical source term in a flamelet approach.

Example 2: Turbulence anisotropy

For our second example problem, we examine a non-reacting turbulent flow over a curved surface in a channel.
A major source of error in an eddy-viscosity model of turbulence is a result of the inability to account for
the anisotropy in the Reynolds stresses. For our high-fidelity data, we use a DNS data set at Reτ = 395
computed by Marquille and Laval.12 Our low-fidelity model is an apriori calculation of the Reynolds stresses
(using the DNS mean-field and turbulent time-scales) using Menter’s SST k − ω turbulence model.13

To visualize the anisotropy of the turbulence field, we use the Barycentric map proposed by Banerjee et
al.14 and used by Emory and Iaccarino.4 This mapping represents the Reynolds stress tensor as a point
within an equilateral triangle, the corners of which correspond to limiting states of anisotropy and the interior
of the triangle represents a realizable Reynolds stress. This representation starts with the computation of
the eigenvalues λi of the anisotropy tensor (with k being the turbulent kinetic energy)

aij =
u′

iu
′

j

2k
− 1

3
δij (7)

These eigenvalues can then be used to construct the quantities

C1c = λ1 − λ2 (8)

C2c = 2(λ2 − λ3) (9)

C3c = 3λ3 + 1 (10)

The subscripts 1c, 2c, 3c represent the one, two and three component limitsa of the turbulence. Once these
quantities are determined, the map can be visualized via the transformation

xbary = C1cx1c + C2cx2c + C3cx3c (11)

ybary = C1cy1c + C2cy2c + C3cy3c , (12)

where x1c,y1c, etc. are the locations of the corners of the barycentric triangle. Figure 4 shows the three
corners of the triangle and a color map which will be used to identify locations in the barycentric map.
Figures 5, 6 and 7 compare the anisotropy in the DNS solution to that of the RANS model. The DNS
results contain a rich variation of anisotropy in the flow field, while the eddy-viscosity based RANS model
(as expected in 2d incompressible flow) constrains the anisotropy along a line in the barycentric map.

aFor instance, isotropic turbulence represents the three component limit and near-wall regions of boundary layers will exhibit
strong one component tendencies
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Figure 4: Color map representing location in barycentric map.

Figure 5: Anisotropy in the DNS flow field.

Figure 6: Anisotropy in the RANS flow field.
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Figure 7: Barycentric coordinates for entire flow field.
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We again use extended kernel regression to learn the true anisotropy of the turbulent stresses given a
set of flow features from the low-fidelity model. As input features, we choose four quantities: xbary, ybary

predicted by the RANS, a so-called marker function m which provides a measure of the departure of the local
flow condition from parallel shear flow (see Appendix B) and the ratio of production of turbulent kinetic
energy to its dissipation. The desired output feature is the ‘true’ barycentric coordinate location. As in
the previous example, we use a squared-exponential kernel, and learn the four bandwidth parameters using
cross-validation. Unlike the first example, however, we have a two dimensional output and for convenience,
we assume that the two output dimensions are uncorrelated. Specifically, when extended kernel regression
is used, each training point in the data set is assigned a weight set by the single kernel, and given these
weights, a prediction consisting of a mean vector and a diagonal covariance matrix is generated. Instead of
using the entire DNS data set to train the model, we take a random sampling of 5000 flow locations with a
limit on the near-wall points.

Given the DNS mean-field and training data at 5000 locations, the anisotropy predicted by our model is
shown in Fig. 8. Substantial improvement over the SST model is noticeable. We can generate uncertainties
in this new prediction by using the predicted variances. Choosing an appropriate model for the spatial
correlation is, in general, difficult for turbulent flow. As a simplification, we instead sample from two
normally-distributed random variables; the first is the number of standard deviations to shift each barycentric
location in the xbary-dimension, the second is the number of standard deviations to shift in the ybary-
dimension. The same shift, in terms of number of standard deviations, is applied to each location in the
flow field, though the actual amount shifted depends on the local uncertainty. This shift can result in
locations crossing the boundary of the barycentric triangle (thus representing unrealizable Reynolds stress
anisotropies). In such cases, a projection to the nearest point on the boundary is used. Each specific
shift creates a different barycentric map, and thus results in a family of anisotropy models with differing
likelihoods. Two example draws from this distribution are shown in Fig. 9.

Figure 8: New mean prediction of anisotropy.

IV. Application in Simulations

Once the training model is used to build a probabilistic map, this information can be utilized in a flow
simulation as schematized in Fig. 10. The ML process can, in principle, operate on multiple high/low
fidelity data sets to build relationships between the input features from the low fidelity model X ′ to the true
output feature Y . As explained in the previous section, our algorithm generates several realizations of the
output feature (we refer to this as Y ) at every location in the flow, and these realizations (for instance, the
barycentric coordinate) can be used to build the modeling term (for instance, the Reynolds stresses) under
question. Thus, at every time-step (or iteration), the flow solver sends input features and receives modeling
terms which it can use in the solution. Bounds for the prediction can be obtained by running an ensemble
of these simulations and constructing an envelope of the outputs. Two examples using the maps generated
in the previous section are detailed in this section.

Example 1: Reacting Mixing Layer simulation

Our first example problem is to predict the temporal evolution of a reacting turbulent mixing layer. The flow
configuration is the same one used in the training model in the previous section, however, the training model
operated on a few randomly selected points in the flow evolution. The details of the mixing streams are
shown in Table 1. As a low-fidelity model, the present work adapts the version of the FPVA model developed
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(a)

(b)

Figure 9: Sample realizations of predicted anisotropy.

Figure 10: Schematic showing the construction of the machine learning map and coupling to a flow simulation.
Note that the training is performed off-line.
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by Terrapon et al.15 In this approach, transport equations are solved for the Favre-averaged variables

Q = (ρ̄, ρ̄ũ, ρ̄ẽt, ρ̄k, ρ̄ω, ρ̄Z̃, ρ̄Z̃ ′′2, ρ̄C̃) (13)

where ρ̄, ũ and ẽt are the density, velocity and total energy of the flow, k, ω represent the kinetic energy of the
turbulence and its specific dissipation rate, and Z̃, Z̃ ′′2, C̃ represent the mean mixture fraction, variance of the
mixture fraction and mean progress variable, respectively. The governing equations and state relationships
are detailed in Appendix A. The chemistry look-up table is a function of Z̃, Z̃ ′′2 and C̃. The extent of the
computational domain in the direction normal to the stream (y) is -0.0025 m to 0.0025 m and is discretized
by 100 mesh cells.

Table 1: Properties of fuel and oxidizer streams in reacting mixing layer.

Stream Temperature (K) Pressure (N/m2) Velocity (m/s) YN2
YO2

YH2

Oxidizer 1500 2 × 105 1696.8 0.767 0.233 0.000

Fuel 500 2 × 105 -1696.8 0.933 0.000 0.067

The initial velocity distribution is taken to be U(y) = ±∆U
2 tanh

[

y
0.5∆w0

]

where ∆U = 2×1696.8 and y ≥
0 is the oxidizer stream and y < 0 is the fuel stream. The initial vorticity thickness is ∆w0 = 2.38× 10−5m.
In the DNS calculations involving finite-rate chemistry,11 these initial conditions were propagated to a time
ts = 0.21ms, at which time turbulent perturbations were superimposed on the flow. The turbulence is allowed
to develop in a DNS simulation until a time te = 0.223ms. As a starting point for the RANS calculations,
the DNS solution corresponding to ti = 0.214ms is used as an initial condition. These conditions are shown
in Fig. 11.

To use the ML model, the input features are chosen to be Z̃, Z̃ ′′2 and C̃ and the output feature is the
source term of the progress variable equation as in the previous section, which is relayed to the flow solver
at the beginning of every simulation time-step. At t = te, Fig. 12 shows the source term interpolated from
the FPVA table and two realizations generated by the learning model. The predicted mass fraction of H2O
at the final simulation time t = te is shown in Fig. 13. Despite the simplicity of our approach, the additional
information offered by the extended kernel regression improves the quality of the FPVA solution. At the
present time, only the source term of the H2O mass fraction equation has been supplemented with the ML
information, and a detailed set of thermo-chemical output features could be constructed to further improve
the low-fidelity model. Furthermore, a more comprehensive description of the joint distributions of the
looked-up quantities should cause a more accurate description of the error in the FPVA solution.

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
x 10

−3

y

 

 

Mixture Fraction
Reaction Progress

(a) Mean Mixture Fraction and Progress variable

−2000 −1000 0 1000 2000
−3

−2

−1

0

1

2

3
x 10

−3

y

Streamwise velocity

(b) Mean Streamwise velocity

Figure 11: Initial conditions for reacting mixing layer simulation.
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Source Term

Figure 12: Source term at t = te = 0.223ms. Dashed line: FPVA table prediction; Solid lines: Two different
realizations of ML prediction.

0 0.02 0.04 0.06 0.08 0.1 0.12
−3

−2

−1

0

1

2

3
x 10

−3

Reaction Progress

y

 

 

Finite Rate+DNS
FPVA+RANS+ML
FPVA+RANS

0.11 0.115 0.12 0.125 0.13 0.135
0

0.2

0.4

0.6

0.8

1

x 10
−3

Reaction Progress

y

 

 

Finite Rate+DNS
FPVA+RANS+ML
FPVA+RANS

Figure 13: Predicted H2O mass fraction at final time instant.
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Example 2: Non-equilibrium Boundary Layer simulation

In the previous section, the DNS data set for the separated flow over a converging-diverging channel (CDC)
was used to learn the relationship between the ‘real’ turbulence anisotropy as a function of the anisotropy
predicted by the RANS model and two other input features. In the present exercise, the applicability of
the probabilistic map is explored in two different channel flow configurations simulated using Menter’s SST
model.13 The training data set is still obtained from the CDC case and applied here directly.

The computational domain is shown in Fig. 14 and corresponds to the geometry used in the experimental
measurements of Webster, Degraaf and Eaton.16 All length scales are non-dimensionalized by the chord of
the bump. The top and bottom boundaries are treated as viscous walls. The left boundary is a turbulent
BL with specified properties, while the right boundary is a subsonic characteristic outflow. We consider
two simulations, corresponding to inlet boundary layers at Reθ = 4000 and Reθ = 12170. We compare the
outputs of our model to experimental measurements of Webster, Degraaf and Eaton16 for the low Reθ case
and to the wall-modeled LES (WMLES) computed by Radhakrishnan and Piomelli17 for the high Reθ case.

As observed from Figs. 5 and 6, the RANS model can be expected to be especially poor in predicting the
one component nature of the anisotropy. This is confirmed in Fig. 16, in which the C1c component of the
anisotropy tensor is shown along the x/c = 0.5 line. The mean of the ML-corrected results shows a better
predictionb when compared to the post-processed WMLES results. A generally more improved prediction
of the anisotropy is also suggested by Fig. 16 which shows the barycentric coordinates in the entire domain.

The ML model is then coupled to the flow-solver in an iterative fashion. At the beginning of each flow
solver iteration, four features (xbary, ybary,m, P/ǫ) are used to obtain realizations of xbary, y

bary
which can

be used to obtain new eigenvalues λi from an inverse of eqns. 8-12. The corrected eigenvalues are injected
into the Reynolds stresses in a fashion similar to that used by Emory et al.4

u′

iu
′

j =
2

3
kδij + k(viλivj) (14)

where k is predicted by the baseline SST model and v is the right eigenvector of the anisotropy tensor.
Thus, the corrected barycentric coordinates are used to merely redistribute the fluctuation energy among the
various components of the Reynolds stress tensor. Fig. 17 shows the skin friction coefficient predicted by the
SST model and the SST model supplemented with the ML corrections. The ML corrections result in a lower
value of the skin friction over the curved wall. The ML model is, as expected, not very accurate because
the model that has been used in this study only accounts for errors introduced by the inability of the model

to predict the correct structure of the anisotropy tensor. There still remain various aspects of the turbulence
model which may result in additional errors. For instance, in the present work, the redistributed Reynolds
stresses are not used in computing the production of turbulent kinetic energy, a term that is important in
flows with streamline curvature and one that eddy viscosity models routinely mis-predict in the absence of
empirically added sensitization.18 Also, only one set of high and low fidelity data has been used to create
the training model. Nevertheless, even based on this very limited information, the departures of the ML
corrections from the baseline predictions can serve as an indicator of uncertainty. This exercise should be
considered as a proof-of-concept that the methodology can be applied in real problem.

x/c

y/
c

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

Figure 14: Computational Domain.

bThe disagreement between the WMLES and the ML prediction is pronounced only in the potential part of the flow.
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One component anisotropy measure (C1c)

y/
c

0 0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

Figure 15: Barycentric coordinate at x = 0.5c. Dots: WMLES; Solid line: SST; Dashed line: SST+ML
model (Different realizations are shown).

(a) SST: Red; SST+ML: Green (b) WMLES

Figure 16: Barycentric map in the entire domain showing anisotropy of Reynolds stress tensor.
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(a) Reθ = 4000
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(b) Reθ = 12170

Figure 17: Predicted Skin friction coefficient. Dots: Measured (Reθ = 4000), WMLES (Reθ = 12170); Solid
line: SST model; Dashed lines: SST+ML model.

V. Perspectives and Conclusions

We have presented a machine learning-based technique to improve low-fidelity models and obtain error
bounds by using information from related high-fidelity data sets. We introduced a new supervised learning

technique which extends kernel regression to create a local error model. Given data from a more accurate
model, we create a probabilistic mapping between a set of input features from the low-fidelity model and a
set of desired output features in the high-fidelity model. Our technique uses a kernel function to weight the
relevance of each training point, and using these weights, sets a Gaussian probability on the set of output
features. We then combine these local errors with a global correlation model, and sample the resulting
stochastic model to obtain error bars on the solution output. We apply this methodology to two illustrative
problems in combustion and turbulence. In the combustion example, we use extended kernel regression to
replace the thermo-chemical source terms in a flamelet model by a model that is informed by data from a
finite-rate chemistry numerical simulation. We also learn a global correlation model that smooths out the
spatial variability in the source term. Applying this model, we see a better prediction of the source term
compared with the standard flamelet model. The second example problem uses a DNS simulation to learn
the anisotropy of the Reynolds stress tensor as a function of several relevant mean flow parameters. We
apply this model to two different channel flow problems, and demonstrate an improved prediction of the
turbulence anisotropy.

It is important to mention that this paper presents a proof-of-concept on how machine learning could

be used in uncertainty quantification. A simplistic version of the methodology (in terms of number of flow-
features, training data-sets, spatial correlations, etc) has been implemented, and, despite this simplicity,
encouraging initial results have been obtained. Much improvement is required before this technique can
be used routinely in model correction/error quantification, especially in the latter aspect. An underlying
assumption of universality is presumed as model errors are related (in a stochastic fashion) to a specific set of
input flow features, whereas in reality, the physics could be different across problems. However, the authors
do not consider this to be a serious limitation as the original models themselves are built and calibrated
under specific (and often controlled) conditions and thus assume some form of universality. In addition, if
the training model can be developed in regimes that are relevant to the problem of interest, the accuracy of
the correction/error models can be improved. At the very least, this technique can be used as an indicator

of error in the base model.
There are a number of potential directions of moving beyond the simple implementations in this paper.
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First and foremost is the choice of input and output features, where engineering insight should be a good ini-
tial guide. There also exist specific machine learning techniques for feature selection, such as Principal Com-
ponent Analysis,19 which can help down-select from a number of relevant features. Another important im-
provement will be to consider error models that rely on distributions other than Gaussians. While Gaussians
have a number of desirable mathematical properties, they often underestimate the probability of rare events
and can thus underestimate the true uncertainties. Replacing Gaussian uncertainties with, for instance,
Laplace or Gamma distributions may be appropriate in many situations. Furthermore, much investigation
remains in creating appropriate global error models. In this work, we used two very different, but simplistic
global error models. The first assumed that correlations could be represented by correlated Gaussian random
variables, while the second assumed that all locations in the field were equally biased. These assumptions
can be relaxed by segmenting the flow into different regions (such as laminar/transitional/turbulent regions
or attached/separating boundary layers, etc) and adopting different correlations in each region of the flow.
Nevertheless, the initial results in this paper are sufficiently encouraging to merit future exploration and
development in the use of machine learning for epistemic uncertainty quantification.
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Appendix A: Flamelet equations

The governing equations are the Favre-averaged equations for mass, momentum and energy along with a
Reynolds analogy for turbulent heat flux and a Boussinesq approximation for the turbulent transport. These
equations are supplemented by:

∂

∂t
(ρ̄Z̃) +

∂

∂xj
(ρ̄ũZ̃) =

∂

∂xj

[

(

λ

cp
+

µt

Scz

)

∂Z̃

∂xj

]

∂

∂t
(ρ̄Z̃ ′′2) +

∂

∂xj
(ρ̄ũZ̃ ′′2) =

∂

∂xj

[

(

λ

cp
+

µt

Scz′′2

)

∂Z̃ ′′2

∂xj

]

+ 2
µt

Scz′′2

∂Z̃

∂xj

∂Z̃

∂xj
− cχρ̄χ̃′′

∂

∂t
(ρ̄C̃) +

∂

∂xj
(ρ̄ũC̃) =

∂

∂xj

[

(

λ

cp
+

µt

Scc

)

∂C̃

∂xj

]

+ ˜̇ωC

where µt and Sc() represent the turbulent eddy viscosity and Schmidt number, respectively. Note that a
unity Lewis number assumption has been used. The turbulent kinetic energy k and eddy viscosity µt are
calculated using Menter’s Shear Stress Transport13 model. For closure, the equations of state, material
properties and the source term ˜̇ωC are derived from quantities interpolated from pre-computed tables as a
function of Z̃, Z̃ ′′2, C̃.

The equations of state are

T̂ = T̂0 +
γ̃0 − 1

aγ

(

eaγ(ẽ−ẽ0)/R̃0 − 1
)

(15)

ẽ = ẽ0 +
R̃0

aγ
ln

(

1 +
aγ(T̂ − T̂0)

γ̃0 − 1

)

(16)

h̃ = ẽ + R̃0T̂ (17)

p̄ = ρ̄R̃0T̂ (18)

λ

cp
=

(

λ

cp

)

0

[

T̂

T̂0

]0.62

(19)

µ = µ0

[

T̂

T̂0

]0.7

(20)

γ = γ̃0 + aγ(T̂ − T̂0) (21)

a =

√

γR̃0T̂ (22)

In the above equations, the variables T̂0, γ̃0, ẽ0, R̃0, aγ , γ̃0,
(

λ
cp

)

0
, µ0 are pre-computed using flamelet libraries

and tabulated as functions of Z̃, Z̃ ′′2, C̃ and interpolated when required. Note that the flamelet library is
pre-computed for a specific reference pressure pref . To sensitize the model to changes in pressure, the the

source term in the progress variable reaction is scaled as ˜̇ωC = ˜̇ω0C
p̄2

p2

ref

. Finally, the scalar dissipation rate

term χ̃′′ is approximated as 0.18ω.

Appendix B: Definition of marker function m

The “marker function” m was introduced by Emory et al.20 to describe regions of the flow which deviate
from parallel shear flow. This can be used as a proxy to indicate regions in which RANS models (particularly
eddy viscosity models) are likely to be inaccurate. Given the Reynolds averaged velocity vector field ui, the
gradient of the component of the velocity vector aligned with the local streamline is given by

gj =
ui√
ukuk

∂ui

∂xj
. (23)
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The cosine of the angle between this gradient and the streamline direction is then

f =
|gjsj |√
gkgk

. (24)

The marker is defined as a composite of f along with an indicator of the local importance of turbulence,
such that far-field and potential flows may be ignored. The final expression for the marker is then

m =
k√

ukuk
f, (25)

where k is the turbulent kinetic energy.
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