
Using Supervised Learning to Improve Monte Carlo
Integral Estimation

Brendan Tracey∗

Stanford University, Stanford, California 94305

David Wolpert†

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

and

Juan J. Alonso‡

Stanford University, Stanford, California 94305

DOI: 10.2514/1.J051655

Monte Carlo techniques are used to estimate the integrals of a function using randomly generated samples. The

interest in uncertainty quantification and robust designmakes calculating the expected values of such functions (e.g.,

performance measures) important. Recent developments in scramjets, aircraft technology forecasting, structural

reliability, and robust low-boomaircraft designs useMonteCarlo techniques to ensure the appropriate quantification

of uncertainties. Because of high variance and slow convergence, Monte Carlo techniques require a large number of

function evaluations, limiting the fidelity of the tools that can be used to predict performance. StackedMonte Carlo is

presented, which is a new method for postprocessing an existing set of Monte Carlo samples to improve integral

estimation. StackedMonte Carlo is based on combining fitting functions with cross-validation and should reduce the

variance of any type ofMonteCarlo integral estimate (importance sampling, quasi-MonteCarlo, etc.) without adding

bias. An extensive set of experiments is reported, confirming that the stackedMonte Carlo estimate is more accurate

than both the unprocessed Monte Carlo estimate and the estimate from a functional fit. Stacked Monte Carlo is

applied to estimate the fuel-burn metrics of future commercial aircraft and sonic boom loudness measures, and the

efficiency ofMonte Carlo is comparedwith that of more standardmethods. It is shown that for negligible, additional,

computational cost, significant increases in accuracy are gained.

Nomenclature

b = bias ofM
Dx = set of samples of f�x�
Dx�i� = ith sample of f�x�
Di;testx = subset of samples in the ith testing set

Di;trainx = subset of samples in the ith training set
E�⋅� = expected value
f�Dx�i�� = function value at the ith sample
f�x� = objective function
f̂M = estimate of f̂ fromM
f̂ = true expected value of f�x�
g�x� = fitting algorithm
gi�Dx�i�� = prediction of fit gi at Dx�i�
gi�x� = ith fit to f�x�
ĝ = expected value of g�x�
k = number of folds
Li = likelihood of the expected value of the ith fold
M = estimator of f̂
mi = number of samples in the ith testing set
N = number of samples

Ni = number of samples in the ith training set
p�x� = probability distribution of x
q�x� = alternate sample distribution
r�x� = fitting algorithm for p�x�
v = variance ofM
x = input parameters
α = free parameter of StackMC
β = free parameter in the fitting algorithm
ρ = correlation
σ = standard deviation

I. Introduction

A SSESSING the effects of uncertainties on system performance
is fundamental in aerospace design. An ideal system is one that

performs well under a wide variety of conditions and that is unlikely
to fail. However, a system that is designed for optimal performance
under the nominal operating conditions can see severe performance
degradation at even slightly off-design conditions. Aerospace
systems rarely operate at precisely the design condition, and a robust
design approach dictates trading some performance at the nominal
condition for improved performance over a wide range of operating
conditions. However, certain input conditions will occur rarely or
never, and adding robustness for these conditions will degrade the
average system performance. We are often interested in optimizing
the expected performance of a system rather than the performance at
any specific operating point.
Formally, we are interested in an integral of the form

E�f� � f̂ �
Z
f�x�p�x� dx (1)

where f�x� is the (potentially multivariate) objective function to be
optimized, andp�x� is the probability density function [or probability
distribution in which case Eq. (1) is actually a summation] from
which x is generated.

Presented as Paper 2011-1843 at the 52ndAIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Denver, CO, 4–
7 April 2011; received 3 January 2012; revision received 28 February 2013;
accepted for publication 4 March 2013; published online 19 June 2013.
Copyright © 2013 by the authors. Published by the American Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 1533-385X/13 and $10.00 in
correspondence with the CCC.

*Ph.D. Candidate, Department of Aeronautics and Astronautics, Durand
Building 496 Lomita Mall. Member AIAA.

†Research Scientist, Santa Fe Institute, Information Sciences Group, 1399
Hyde Park Road, Mail Stop 460.

‡Associate Professor, Department ofAeronautics andAstronautics,Durand
Building 496 Lomita Mall. Associate Fellow AIAA.

2015

AIAA JOURNAL
Vol. 51, No. 8, August 2013

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

http://dx.doi.org/

Evaluating Eq. (1) is nontrivial, but many problems in aerospace
require its computation, such as evaluating failure probabilities [1],
performing robust design [2], examining uncertainties in fluid-
structure interactions [3], and aerothermal interactions [4]. When the
objective function is high-dimensional and/or expensive to evaluate,
standard quadrature techniques (such as Simpson’s rule) become
intractable. Polynomial chaos methods [5–8] are very effective for
small numbers of specific classes of uncertain variables (Gaussian,
exponential, uniform, etc.). However, polynomial chaos methods are
not suitable for all problems, as it is hard to incorporate nonpara-
metric uncertainty, and the computational cost grows exponentially
with the number of uncertain parameters. Sparse grid and variations
of stochastic collocation techniques have been developed, however,
to ameliorate some of these shortcomings [9]. Monte Carlo (MC)
methods are powerful techniques that have become the standard
for integral estimation due to their ability to incorporate any form of
uncertainty and their reasonable scaling properties. However, MC
techniques also have their drawbacks; the required computational
expense, although less than quadrature techniques, is still prohibitive
in many situations. The fundamental question is whether a technique
exists to significantly lower the cost of estimating Eq. (1) while not
sacrificing the desirable properties of MC. This paper describes such
a technique that combines MC with machine learning and statistical
techniques that leads to significant computational savings over tra-
ditional methods.
We begin this paper with a brief review of integral estimation

techniques including MC, fitting algorithms, and stacking. We then
introduce a new technique we call stacked MC (StackMC), which
uses stacking to reduce the estimation error of any MC method.
Finally, we apply StackMC to a number of analytic example prob-
lems and two problems from the aerospace literature. We show that
StackMC can significantly reduce estimation error, and it never has a
higher estimation error than the best of MC and the chosen fitting
algorithm.

II. Integral Estimation Techniques

A. Estimation Error

When using any methodM returning f̂M as an estimate of Eq. (1),
there are two sources of estimation error: bias (b) and variance (v).
Bias is the expected difference between the method and the truth:
b � E�f̂M − f̂�, where the expectation is over all data sets. Amethod
whose average overmany runs gives the correct answer has zero bias,
whereas a method that estimates high or low on average has nonzero
bias. As an example, the (inviscid) Euler equations have significant
bias in their estimate of viscous drag. Variance is a measure of how
much f̂M varies between different runs ofM: v � E��f̂M − E�f̂M��2�.
IfM is deterministic, it has zero variance, because every run returns
the same answer, whereas if M is stochastic, multiple runs have
different outputs leading to a nonzero variance. The total expected
squared error is the combination of these two factors:

E�jf̂M − f̂j2� � b2 � v (2)

Any method seeking to reduce estimation error must keep both
sources of error low.

B. MC Techniques

In “Simple Sampling” MC, a set of N samples, Dx, is generated
randomly according top�x�. The estimate of the expected value of the
function based on Dx is the average of the function values of the
samples:

f̂ ≈ f̂MC �
1

N

XN
i�1

f�Dx�i��

where Dx�i� refers to the ith generated sample. Simple MC has two
extremely useful properties. First, MC is guaranteed to be unbiased,
and, thus, on average, will return the correct answer. Second, MC is
guaranteed to converge to the correct answer at a rate of O�n1∕2�,

which is a rate independent with respect to the number of dimensions.
That is, for any problem, increasing the number of samples by a factor
of 100 decreases the expected error by a factor of 10. Because simple
MC has zero bias, the estimation error is solely due to the variance of
theMCalgorithm. If f�x� has large fluctuations, theMCestimatewill
have large fluctuations as well: the larger the variance of f�x�, the
larger the variance, and, thus, the error ofMonte Carlo. Similarly, the
expected error of MC is smaller for functions with lower variance.
Many different sample generation techniques exist to help reduce

the variance of Monte Carlo. Importance sampling [10] generates
samples from an alternate distribution q�x� [instead of the true
distribution p�x�] and estimates integral (1) as a weighted average of
sample values:

f̂ �
Z
f�x�p�x� dx �

Z
f�x�p�x�
q�x� q�x� dx (3)

f̂is �
1

N

XN
i�1

f�Dx�i��p�Dx�i��
q�Dx�i��

(4)

Importance sampling is often used when the tails of a distribution
have a measurable effect on f̂ but occur very infrequently. When
using simple MC, several million samples are needed to accurately
capture the effects of a once-in-a-million event, whereas importance
sampling causes unlikely outcomes to occur more frequently. This
reduces the total number of samples needed to accurately capture the
effects of tail events, allowing fewer total samples for the same level
of accuracy.
Quasi-MC (QMC) techniques reducevariance by choosing sample

locations more carefully. Sample points generated from simple MC
will inevitably cluster in some locations and leave other locations
void of samples. QMCmethods are usually deterministic and reduce
variance by spreading points evenly throughout the sample space.
Two such methods are the scrambled Halton sequence [11] and the
Sobol sequence [12]. Although often effective, due to deterministic
sample generation, they are not guaranteed to be unbiased. It is also
difficult to generate points from an arbitrary p�x�; most QMC algo-
rithms generate sample points from a uniform distribution over the
unit hypercube.

C. Supervised Learning and Fitting

A second class of techniques for estimating integrals from data
seeks to use the data samples more efficiently through the use
supervised learning techniques. A specific supervised learning
method, a “fitting algorithm,” takes a set of data samples and creates a
“fit,” that is, an approximation to the functional form of f�x�. This fit
is then integrated (analytically, numerically, or by Monte Carlo) and
used as an approximation to the true integral. Examples of fitting
algorithms include splines, high-order polynomials, and Fourier
expansions. More complicated methods are also possible, such as
piecewise linear curves [13] or piecewise quadratic polynomials, as is
done in Simpson’s rule. Fits incorporate the spatial distribution of
sample points and, thus, often give more accurate estimates of f̂
rather than MC. However, using a fitting algorithm can induce bias
and may or may not exhibit convergence to the correct answer as the
number of points increases. Additionally, when the number of data
points is “too small,”many fitting algorithms exhibit higher variance
than MC, and, as a result, using a fitting algorithm can be worse than
not using one, especially with low numbers of sample points and in
high-dimensional spaces. It is usually impossible to know a priori
how many points is “too small,” making it difficult to know when to
use a fitting algorithm.
Additionally, it is difficult to know if a fit to the data samples is an

accurate representation of f�x� at the values of xwhich are not in the
data set. Many fitting algorithms exhibit a property known as
“overfitting,” in which a fit to the data is very accurate at x locations
that are among the data samples but is very inaccurate at x locations
not among the data samples (this is true of higher order polynomial
fits, in which the oscillatory nature of the fit results in large

2016 TRACEY, WOLPERT, AND ALONSO

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

inaccuracies away from the sample points). As a result, one cannot
use the data samples themselves to make a fit and evaluate its
accuracy. The standard technique for addressing this issue is known
as cross-validation, in which a certain percentage of the data are used
to make the fit, and the rest of the data are used to evaluate its
performance. This process is repeated several times, each time using a
different subset of the data tomake the fit. The fit which performs best
on the remaining data is used as the output of the fitting algorithm,
and the rest of the fits are ignored (winner takes all).
Stacking is a technique first introduced by Wolpert [14] that

improves upon cross-validation. Instead of ignoring the losing fits, as
in winner takes all, stacking combines all of the fits together. Because
each fit was createdwith a different set of data, they all contain unique
information about f�x�. The combination of all of this information
should be a better approximation to f�x� than any one fit alone. There
aremany differentways to combine the fits together, but a simpleway
is to give each fit a weight proportional to how well it predicted the
data on which it was not trained. Interested readers can see stacking
applied to improving regression [15], probability density estimation
[16], confidence interval estimation [17], and optimization [18]. For a
comparison of stacking to other methods, see [19].

III. Stacked Monte Carlo

Themain idea of StackMC is to incorporate the variance reduction
potential of a fitting algorithmwhile avoiding the introduction of bias
and overconfidence in poor fits to the data. It makes no assumptions
about the function f�x� nor the sample generation method; therefore,
StackMC can be used to augment nearly any MC application.
Let us assume that we have a function g�x� that is a reasonable

(though not necessarily perfect) fit to f�x�. Equation (1) can be
rewritten as

f̂ �
Z

αg�x�p�x� dx�
Z
�f�x� − αg�x��p�x� dx

� αĝ�
Z
�f�x� − αg�x��p�x� dx (5)

where α is a constant, and ĝ � ∫ g�x�p�x� dx. Instead of using MC
samples to estimate Eq. (1) directly, we can use the MC samples to
estimate the integral term in Eq. (5), that is

f̂ ≈ αĝ� 1

N

XN
i�1

f�Dx�i�� − αg�Dx�i�� (6)

Because g�x� is assumed to be a reasonable fit, for a properly chosen
α, f�x� − αg�x� has lower variance than f�x� alone (see Fig. 1), and
so an MC estimate of Eq. (5) has a lower expected error than an
estimate of Eq. (1). In fact, it can be shown [20] that the optimal value
of α to minimize expected error is

α � ρ
σf
σg

(7)

where σf and σg are the standard deviations of f�x� and g�x�,
respectively, and ρ is the correlation between f and g. Intuitively, if g
is a good fit to f, ρ (and correspondingly α) will be high, and ĝwill be
trusted as a good estimate for f̂. If g is a poor fit to f, ρ and αwill both
be low, and ĝ will be mostly ignored. From a different perspective,
Eq. (5) takes the expected value estimated from g�x� and corrects it
with a term estimating the bias of g�x�. Either way, by using Eq. (5)
the error should be lower than using either MC or the fitting function
alone. Because the expected value of the fit is both added and
subtracted, Eq. (6) remains an unbiased estimate of Eq. (1). Thus
Eq. (6) incorporates information from a fit while remaining unbiased,
and α allows us to emphasize good fits while deemphasizing
poor ones.
The obvious question is how to obtain g�x� and find α from data

samples. The first step is to pick a functional form for g�x�which can
be nearly anything, as long as it canmake predictions at new x values.
For example, g�x� could be a polynomial with unknown coefficients.
For now, we also require that g is analytically integrable over the
volume, that is, we can calculate

ĝ �
Z
g�x�p�x� dx (8)

analytically (see further discussion later in the paper). By comparing
the output of a fit g�x� to the true f�x� values, an estimate for the
“goodness” of the fit (and by extension α) could be obtained, and
Eq. (6) could be applied. However, doing this directly would cause
overfitting and would lead to an inaccurate estimate of α.
Overfitting can be mitigated by using a technique known as k-fold

cross-validation [21]. The N data samples are randomly partitioned
into k testing sets,Di;testx , i � 1; : : : ; k, which are mutually exclusive
and contain the same number of samples (differing slightly if N∕k is
not an integer). Training sets,Di;trainx , i � 1; : : : ; k, contain all of the
data samples not inDi;testx . We callNi the number of samples inDi;testx

andmi the number of samples inDi;trainx (so thatNi �mi � N). One
fit per fold, gi�x�, is created using only theNi samples inDi;trainx for a
total of k fitters [k different g�x� functions]. The samples in a training
set are “held-in” points, because they are used to generate the fit,
whereas points in the corresponding testing set are “held-out” points,
because the fit is generated without using these samples. Each data
sample is in a held-out data set one time and in the held-in data set
k − 1 times. Using gi�x�, a prediction of the function values for the
points in Di;testx is made [gi�Di;trainx �]. Standard cross-validation
evaluates the accuracy of each of the fits and chooses the best fit to use
as a single g�x�.
Instead of ignoring all but the best fit, we adopt the approach of

stacking and use Eq. (5) to get an estimate of f̂ from each of the fitters.
We use the held-out data points as an estimate of the integral term:

Fig. 1 Comparison of f�x� and f�x� − αg�x� for a value of α � 0.85. The variance of f − αg is lower than that of f alone, so that aMC estimate of f − αg
will have less error than an estimate of f .

TRACEY, WOLPERT, AND ALONSO 2017

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

f̂StackMC�i� � αĝi �
Z
�f�x� − αgi�x��p�x� dx (9)

f̂StackMC�i� � αĝi �
1

mi

Xmi
j�1

f�Di;testx �j�� − αgi�Di;testx �j�� (10)

and finally themean of these estimates is taken as the final prediction:

f̂ ≈ f̂StackMC �
1

k

Xk
i�1

f̂StackMC�i� (11)

Wecan also use the predictions at the held-out points to estimate α; σf
is estimated from the variance of the true sample function values, σg
from the variance of the predictions from the gi�x�, and ρ from the
correlation between the predictions and the truth:

μf �
1

N

XN
j�1

f�Dx�j�� (12)

μg �
1

N

Xk
i�1

XNi
j�1

gi�Di;trainx �j�� (13)

σf �

��
1

N − 1

XN
j�1
�f�Dx�j�� − μf�2

vuut (14)

σg �

���
1

N − 1

Xk
i�1

XNi
j�1
�gi�Di;trainx �j�� − μg�2

vuut (15)

cov�f; g� � 1

N − 1

Xk
i�1

XNi
j�1
�f�Di;trainx �j�� − μf��g�Di;trainx �j�� − μg�

(16)

ρ � cov�f; g�
σfσg

(17)

Finally, we plug into Eq. (11) to obtain the StackMC estimate:

f̂StackMC �
1

k

Xk
i�1

f̂StackMC�i�

� 1

k

Xk
i�1

�
αĝi �

1

mi

Xmi
j�1

f�Di;testx �j�� − αgi�Di;testx �j��
�
(18)

One final correction is needed to complete StackMC. It is possible
that some or all of the ĝi differ greatly from f̂, but the calculated value
of α is high because of good predictions at the held-out data points. If
left alone, this would cause StackMC to return a low-quality
prediction on some data sets.
However, the error in the mean (EIM) of the MC samples can be

used as a second metric to evaluate the goodness of the fit. EIM is
defined as

�σ � σ����
N
p (19)

and represents the uncertainty in the mean of a set of MC samples.
Specifically, it gives us a likelihood bound on f̂ and based on f̂MC and
σf. We can find a “likelihood” for each fold by calculating

~Li �
jĝi − f̂MCj

�σ
(20)

The higherLi, the less likely it is that ĝi � f̂, and the more likely it is
that the fitter is bad and should be ignored. A heuristic is set if that
max�Li� > C, f̂StackMC � f̂MC, that is, all of the fits are ignored
entirely, and theMCaverage is used. IfC is set too low, then toomany
reasonable fits are ignored, and if C is set too high, then too many
unreasonable fits are kept. A value of C � 5 was chosen based on
experimentation; it was clear that settingC as low as 3 or as high as 7
were inferior.
Finally, here is a note about the bias of StackMC. Because the

expected value of the fit is being both added and subtracted, it is true
that Eq. (5) [and by extension Eqs. (9) and (11)] is also unbiased for a
fixed α. However, using the held-out data to both set α and estimating
the integral can introduce bias. In practice, we have found that this is
only a problem for very small numbers of sample points, in which the
result of the fitting algorithm changes significantly depending on the
held-in samples.

A. Generalized Stacked Monte Carlo

The discussion above was for the case in which the samples are
generated according to a knownp�x�, but this is only a special case of
a class of estimation scenarios. Although the overall methodology
remains approximately the same for these other scenarios, some
specifics (such as the calculation ofα) changewith the choice forg�x�
and the sample generation method.

1. Importance Sampling

If importance sampling methods are used, samples are generated
from q�x� instead of p�x�. As a result, Eq. (1) is expanded as

f̂ �
Z

αg�x�q�x� dx�
Z �

f�x�p�x�
q�x� − αg�x�

�
q�x� dx (21)

and sog�x� should be a fitting algorithm forf�x�p�x�∕q�x� instead of
just f�x�. As a result, a few modifications are needed, including the
fact that

ĝi �
Z
g�x�q�x� dx (22)

and that in the calculation of α and Eq. (18), fp∕q is used instead of
just f.

2. Inability of Integrating g�x� over p�x�
If the samples are generated from p�x�, but the choice for g�x�

cannot be integrated overp�x�, there are two options. The first option
is to use another function r�x� as a fitting algorithm for p�x� over
which g�x� is integrable. We expand Eq. (1) as

f̂ �
Z

αg�x�r�x� dx�
Z
f�x�p�x� − αg�x�r�x� dx

�
Z

αg�x�r�x� dx�
Z �

f�x� − α
g�x�r�x�
p�x�

�
p�x� dx (23)

Similar to the above case, when calculating α and Eq. (18), gr∕p
replaces g.
Alternately, when g�x� is significantly less computationally

expensive than f�x�, ĝ itself can be estimated by MC techniques.
When estimating ĝ from the Ng additional samples, it should be the
case that Ng ≫ N, so that errors in the estimate of ĝ do not cause
significant errors in the estimate of f̂.

B. Simple Example

We attempt to find the expected value of 3x6 � 3.6x5 − 91.29x4−
19.41x3 � 57.15x2 − 14.43x� 0.9, where x is generated according

2018 TRACEY, WOLPERT, AND ALONSO

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

to a uniform distribution between −3 and 3. Thus, the integral of
concern is

f̂ � 1

2

Z
3

−3
�x6 � 1.2x5 − 30.43x4 − 6.47x3 � 19.05x2

− 4.81x� 0.3� dx (24)

The actual value of f̂ can be calculated to be 0.7069. There are 20
samples generated and divided into five folds, with each fold’s testing
set containing four points, and each corresponding training set
containing the other 16 points. Although the function of interest is
a sixth-order polynomial, g�x� was chosen to be a third-order
polynomial: β0 � β1x� β2x

2 � β3x
3. The fit to the first fold, g1�x�

is found by choosing the βswhich minimize the squared error of the
data inD1;train

x (using the standard pseudoinverse). The fits to the rest
of the folds g2�x�–g5�x� are set similarly. Next, gi�Di;testx �j�� is
evaluated for each test point in Di;testx .
The following parameters are calculated to find α:

μf � 1.1337 μg � 1.9258 σf � 5.6835 σg � 5.2678

cov�f; g� � 24.0999 ρ � cov�f; g�
σfσg

� 0.8049

α � ρ
σf
σg
� 0.8685 (25)

Finally, Eq. (18) is applied to calculate f̂StackMC.
Using the MC estimate alone gives f̂mc � 1.1337, and using a fit

to all of the data points alone gives f̂fit � 1.3412. By using StackMC,
we find f̂StackMC � 0.8081, which is much closer to the true value
than either of the individual estimates. Details of the calculations
appear in Tables 1 and 2, and the fit from the first fold appears
in Fig. 2.

IV. Results

We test the performance of StackMC on a number of different
problems. In the first set of example cases, the problems have known
analytic results, and an exact analysis of the performance of StackMC
is examined. In the second set, StackMC is applied to two aerospace
problems in the literature. Although an exact solution to the
aerospace problems is not available, an approximate answer is
obtained from a MC estimate using 100,000 samples. For each
example problem, a range of dataset sizes was tested, and for each
dataset size, 2000 simulations were run using ten-fold cross
validation. Unless otherwise noted, the plots in this section have three

lines, which show the mean squared error versus the number of
sample points. The lines represent the average squared error from
using just the prediction ofMC (green), the fit to all the samples (red),
and StackMC (blue).

A. Analytic Test Cases

1. 10-Dimensional Rosenbrock Function Under a Uniform p�x�,
Polynomial Fitter

The D-dimensional Rosenbrock function is given by

f�x� �
XD−1
i�1
��1 − xi�2 � 100�xi�1 − x2i �2� (26)

and x is drawn from auniformdistribution over the �−3; 3� hypercube.
The fitting algorithm is chosen as a third-order polynomial in each

dimension whose form is

g�x� � β0 �
XD
i�1

β1;ixi � β2;ix
2
i � β3;ix

3
i (27)

where βi are free parameters that are set from the data samples.
A comparison of the error of StackMC can be seen in Fig. 3 for the

10-dimensional version of the Rosenbrock function. At low numbers
of sample points, MC is more accurate, on average, than the
polynomial fit to all the data points, but the polynomial outperforms
MC at higher numbers of points. Throughout the entire range of
number of samples, StackMC performs at least as well as the best of
the two. Additionally, as displayed in Fig. 4, the polynomial fitter is
actually a biased fitter for this example problem. StackMC is able to
use cross-validation to remove the bias of the fitter while keeping the
accuracy of its estimate.

Table 1 Details of simple example calculations

Leftout fold x f�x� β0 β1 β2 β3 gi�x� ĝi

1 0.4087 0.2438 2.7385 −4.3737 −3.9500 −9.4712 −0.3549 1.4281
−0.6950 7.8350 7.0498
−0.0943 0.9259 3.1237
0.1152 −0.0166 2.1675

2 0.4117 0.2420 2.4683 −3.3829 −3.0183 −11.3595 −0.2284 1.4622
0.2745 0.1108 1.0774
0.1823 −0.0163 1.6825
0.2882 0.1342 0.9708

3 −0.6318 7.6689 0.7900 0.3755 3.3397 −22.0257 7.4398 1.9032
−0.3923 4.7811 2.4864
−0.8345 6.4358 15.6002
0.7716 −5.2874 −7.0489

4 0.5711 −0.5683 1.8054 −6.7386 −0.2738 −1.3468 −2.3831 1.7141
−0.5988 7.4412 6.0312
0.9607 −16.6302 −6.1154
−0.6411 7.7172 6.3677

5 0.7124 −3.2834 2.3965 −3.8653 −3.4306 −10.9995 −6.0740 1.2529
0.1206 −0.0208 1.8609
−0.3960 4.8377 4.0722
0.2816 0.1230 0.7901

Table 2 Details of fold combination calculations

Fold ĝi
Pmi

j�1 f�D
i;test
x �j��

−αgi�Di;testx �j��
Corrected ĝi

1 1.4281 −0.3553 0.8795
2 1.4622 −0.6428 0.6271
3 1.9032 −0.6122 1.0407
4 1.7141 −1.3569 0.1318
5 1.2529 −0.2732 1.3613

f̂StackMC 0.8081

TRACEY, WOLPERT, AND ALONSO 2019

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

2. 10-Dimensional Rosenbrock Function Under a Gaussian p�x�
This is the same setup as in the preceding section, except that x is

generated according to a multivariate Gaussian distribution, in which
each dimension is independent with μ � 0 and σ � 2.
Similar to the preceding case, Fig. 5 shows that at low numbers of

sample points MC outperforms the polynomial fit, whereas at high
sample points the polynomial does better than MC alone. However,
for all numbers of sample points, StackMCoutperforms the other two
algorithms.

3. 20-Dimensional BTButterfly, Uniform p�x�, Fourier Fitter
In the preceding examples, theRosenbrock function is a fourth-order

polynomial, and the fitting algorithm is a third-order polynomial,
meaning StackMC had reasonable fits to use to improve upon
Monte Carlo. To challenge StackMC, a function we call the
BTButterfly was created so that it would be very difficult to fit
accurately.
Like the Rosenbrock function, its general form is given by

f�x� �
XD−1
i�1

h�xi; xi�1� (28)

with the contour plot of h shown in Fig. 6. The uncertainty in x is
uniform over the �−3; 3� hypercube. The regions that appear as boxes
are introduced discontinuities.

A Fourier expansion for g�x�was chosen, whose form is given by

g�x� � β0 �
XD
i�1

β1;i cos�xi� � β2;i cos�2xi� � β3;i cos�3xi�

� β4;i sin�x�i � β5;i sin�2xi� � β3;i sin�3xi� (29)

Results for this function are shown in Fig. 7 and exhibit the same
trends discussed in the preceding text; StackMChas as lowof an error
as the lowest of each method.

B. Aerospace Applications

1. Future Aircraft Uncertainty Quantification

In [22], the authors use the Program for Aircraft Synthesis Studies
[23], a conceptual aircraft design tool, to predict the fuel burn of
future aircraft given certain assumptions about technology advance-
ment in the 2020 and 2030 time frames. In their predictions for single-
aisle aircraft in 2020, the authors model eight probabilistic variables
representing different effects of improvements in aircraft technology
(propulsion, structures, and aerodynamics). Each variable is repre-
sented by a unique beta distribution. The authors generated 15,000
samples (each representing one optimized aircraft) from which they
measured the expected fuel-burnmetric and the standard deviation of
the expected fuel-burn metric.

Fig. 2 Example of the first fold.

30 50 70 100 200
10

4

10
5

10
6

10
7

10−D Rosenbrock Test Function with Uniform p(x)
Average Squared Error vs numPts with 2 sigma error in the mean

Number of Samples

A
ve

ra
ge

 A
bs

2 o
f E

rr
or

 w
ith

 e
rr

or
 in

 th
e

m
ea

n MC Estimate
Polynomial
StackMC

Fig. 3 Comparison of MC, fitter, and StackMC for the Rosenbrock function with uniform uncertainty.

20 40 60 80 100 120 140 160 180 200 220
1.69

1.695

1.7

1.705

1.71

1.715

1.72

1.725

1.73

1.735

1.74
x 10

4
10−D Rosenbrock Test Function with Uniform p(x)

Average Squared Error vs Number of Samples

MC Estimate
Polynomial
StackMC
Exact Solution

Fig. 4 Expected output ofMC, fitter, andStackMCwithEIMfor the 10-
dimensional Rosenbrock function. Note that the fitting function is biased
whereas StackMC and MC are not.

2020 TRACEY, WOLPERT, AND ALONSO

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

To apply StackMC, we choose a third-order polynomial as the
fitting algorithm.A polynomial fit is convenient for this case, because
the E�xn� over a beta distribution is easily found analytically as
follows:

E�xn� �
Q
n
i�1 α� i − 1Q

n
i�1 α� β� i − 1

(30)

where α and β are the two parameters of the beta distribution,B�α; β�.
In Eq. (30), α is not to be confused with the StackMC parameter α.
A set of 100,000 samples were generated via MC sampling, and

themean and standard deviation of their functionvalueswere taken as
the “true” expected value and standard deviation. The standard
deviation is defined as

���������������������������
E�x2� − E�x�2

p
; therefore, to find the standard

deviation, we can run StackMC twice: one time to find E�x� and a

second time to findE�x2�. The results of applying StackMC to find the
expected value and standard deviation are shown in Figs. 8 and 9,
respectively.
The exact same trend is seen here as in all of the analytic problems.

At low numbers of samples, in which the fit to all the data points
performs poorly, StackMC does as well as Monte Carlo. At high
numbers of samples, in which the fit greatly outperforms
Monte Carlo, StackMC does as well as the fitter. In between these
two extremes, StackMC outperforms both algorithms.
In this example problem, each sample takes about 6 s to generate,

and so it takes 150min to generate 1500 samples. Figure 8 shows that
by using StackMC, the same level of accuracy is achieved with only
150 samples (taking only 15 min to generate). StackMC takes less
than 0.5 s to form the 10 fits, calculateα, and calculate Eq. (18),which
is negligible compared to the cost of forming the data set.

10
2

10
7

10
8

10
9

10−D Rosenbrock Test Function with Gaussian p(x)
Average Squared Error vs Number of Samples

Number of Samples

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 w

ith
 e

rr
or

 in
 th

e
m

ea
n

MC Estimate
Polynomial
StackMC

Fig. 5 Comparison of MC, fitter, and StackMC for the 10-dimensional
Rosenbrock function with Gaussian uncertainty.

x (ii)

x
(ii

+
1)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 6 Contour plot of successive dimensions of the BTButterfly
function.

10
2

10
3

10
0

10
1

10
2

20−D BT Butterfly Test Function with Uniform p(x)
Average Squared Error vs Number of Samples

Number of Samples

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 w

ith
 e

rr
or

 in
 th

e
m

ea
n MC Estimate

Polynomial
StackMC

Fig. 7 Comparison of MC, fitter, and StackMC for the BTButterfly
function with uniform uncertainty.

10
2

10
3

10
−8

10
−6

10
−4

10
−2

Aircraft UQ Test Case
Average Squared Error vs Number of Samples

Number of Samples

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 w

ith
 e

rr
or

 in
 th

e
m

ea
n MC Estimate

Polynomial
StackMC

Fig. 8 Comparison of MC, fitter, and StackMC for the aircraft UQ test
case finding E�x�.

10
2

10
3

10
−8

10
−6

10
−4

10
−2

Aircraft UQ Test Case
Average Squared Error vs Number of Samples

Number of Samples

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 w

ith
 e

rr
or

 in
 th

e
m

ea
n MC Estimate

Polynomial
StackMC

Fig. 9 Comparison of MC, fitter, and StackMC for the aircraft UQ test
case finding E�x2�.

TRACEY, WOLPERT, AND ALONSO 2021

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

2. Sonic Boom Uncertainty Quantification

The uncertainty quantification (UQ) of sonic boom noise provides
the second application case. Unlike the aircraft design test case, the
response for the sonic boom noise signature is not smooth; the output
canvary significantlywith slight adjustments to the input parameters.
Colonno and Alonso [24] recently created a new sonic boom
propagation tool, SUBoom, and used it to analyze the robustness of
several aircraft pressure signatures optimized for minimal boom
noise. Specifically, in their high-fidelity near-field case, they have 62
uncertainvariables: Four variables represent aircraft parameters, such
as cruise Mach number and roll angle, and 58 represented
uncertainties in the near-field pressure signal. Similar to the aircraft
UQ case, 100,000 MC samples were generated, and their mean was
used as the true mean. A third-order polynomial was used as g�x�.
The results can be seen in Fig. 10.
Even with the discontinuities in the function space, the same

performance for StackMC is seen. StackMC does as well as the best
of MC and the fitting algorithm. The reduction in error is not as great
here as in the aircraft UQ case, because a polynomial is not a good fit
for f�x�, although using the domain knowledge to improve the
accuracy of the fitting algorithm would further increase the perfor-
mance of StackMC. Despite the relatively poor performance of the
fitting algorithm, it is not worse to use StackMC regardless of the
number of sample points used. In some cases, this test case demon-
strates one of the strengths of StackMC: with virtually no additional
computation cost, the user gets the accuracy of the most accurate
method and doesn't need to concern himself with the relative
accuracies of the fit and Monte Carlo.

V. Limitations and Future Work

The results shown in the preceding section are promising, but even
larger gains could be achieved as the StackMC algorithm imple-
mented in this paper is relatively simple. At the moment, f̂StackMC is
computed as the average of the expected values from each of the fits.
Instead, one could take a weighted average of the fits, in which more
accurate fits have higher weight. StackMC currently only partitions
the data into folds one time, but we could imagine repartitioning the
same samples several times to havemore fits to combine.We useMC
to estimate the integral term in Eq. (9), but using a fitter, or even using
StackMC recursively, could improve the estimates of f̂smc. Further-
more, αwas set as a constant, but in general α could vary between the
folds or could even be a function of x, so that the confidence in the fit
varies spatially.
In a future paper, we will present the results of the application of

StackMC to different input regimes and different sample generation
methods. We will examine higher dimensional spaces, explore the
application of StackMC to multifidelity methods, and extend
StackMC to incorporate multiple fitting functions.

VI. Conclusions

In this paper, a new technique has been introduced, stacked
Monte Carlo (StackMC), which reduces the error of Monte Carlo
(MC) sampling by blending several different fitters of f�x�. StackMC
is unbiased, thus retaining a major advantage of MC and uses cross-
validation to determine the accuracy of the fitting function.
StackMC is an extremely generic postprocessing technique. It is

applied after the samples are generated, and it makes no assumptions
about the generation method. Therefore, StackMC can be used not
only with simple MC, but also with other sample generation tech-
niques, such as importance sampling, quasi-MC, andMarkov–Chain
MC. Furthermore, StackMCmakes no assumptions about f�x�; it not
only applies to smooth functions but also to discontinuous functions
and even functions with discrete variables.
The computation time of StackMC is dominated by forming the

fits gi�x�. As a result, StackMC is only affected by the curse of
dimensionality to the extent of the fitting algorithm. In both of the
aerospace applications, the additional cost of the entire StackMC
algorithm was negligible; there are significant gains in accuracy for
less computation time than the cost of one additional function
evaluation. The only assumptionsmade about g�x� are that it can pre-
dict the value at new sample locations, and that ĝ can be determined
accurately, either analytically or through some other method. As
shown in the BTButterfly and sonic boom example cases, the fit does
not need to be particularly good to see improvement, so the choice for
fitting algorithm can bemodified as computational effort and domain
knowledge allows. StackMC does not eliminate the need for finding
better fitting methods; a better fitter will always lead to an improved
result. With the exception ofC for the EIM test (whose value was not
changed for any of the example cases), StackMC requires no user-set
parameters that need to be heuristically tuned.
Despite a simplistic implementation, StackMCperforms at least as

well as the better of MC or the fitting function, and it outperforms
both for a range of samples. Normally, there is a transition number of
samples at which using a fit to all of the data samples has a smaller
average error than MC, but it is hard to know a priori if it is better to
use the fit. StackMC eliminates the need to decide whether or not to
use a fit; it will never be harmful to do so. Although it is not true that
for any set of data samples f̂StackMC is closer to f̂ than f̂MC, on
average, StackMC reduces the expected error. StackMC is a very
generic method for the postprocessing of data samples; it can be used
by anyone trying to estimate an integral or the expected value of a
function where p�x� is known.

References

[1] Mahadevan, S., and Liu, X., “Probabilistic Analysis of Composite
Structure Ultimate Strength,” AIAA Journal, Vol. 40, No. 7, 2002,
pp. 1408–1414.
doi:10.2514/2.1802

[2] Mavris, D. N., Bandte, O., and DeLaurentis, D. A., “Robust Design
Simulation: A Probabilistic Approach to Multidisciplinary Design,”
Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 298–307.
doi:10.2514/2.2437

[3] Verhoosel, C., “Uncertainty and Reliability Analysis of Fluid-Structure
Stability Boundaries,” AIAA Journal, Vol. 47, No. 1, 1968, pp. 91–104.
doi:10.2514/1.35770

[4] Wright, M. J., Bose, D., and Chen, Y.-K., “Probabilistic Modeling of
Aerothermal and Thermal ProtectionMaterial ResponseUncertainties,”
AIAA Journal, Vol. 45, No. 2, 2007, pp. 399–410.
doi:10.2514/1.26018

[5] Prabhakar, A., Fisher, J., and Bhattacharya, R., “Polynomial Chaos-
Based Analysis of Probabilistic Uncertainty in Hypersonic Flight
Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 33,
No. 1, 2010, pp. 222–324.
doi:10.2514/1.41551

[6] Xiu, D., and Karniadakis, G. E., “TheWiener-Askey Polynomial Chaos
for Stochastic Differential Equations,” SIAM Journal of Scientific

Computing, Vol. 24, No. 2, 2002, pp. 619–644.
doi:10.1137/S1064827501387826

[7] Xiu, D., Numerical Methods for Stocahstic Computations: A Spectral

Method Approach, Princeton Univ. Press, Princeton, NJ, 2010, pp. 1–8,
Chap. 1.

10
3

10
4

10
−2

10
−1

SUBoom Test Case
Average Squared Error vs Number of Samples

Number of Samples

A
ve

ra
ge

 s
qu

ar
ed

 e
rr

or
 w

ith
 e

rr
or

 in
 th

e
m

ea
n MC Estimate

Polynomial
StackMC

Fig. 10 Comparison of MC, fitter, and StackMC for the SUBoom UQ

test case.

2022 TRACEY, WOLPERT, AND ALONSO

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

http://dx.doi.org/10.2514/2.1802
http://dx.doi.org/10.2514/2.1802
http://dx.doi.org/10.2514/2.1802
http://dx.doi.org/10.2514/2.2437
http://dx.doi.org/10.2514/2.2437
http://dx.doi.org/10.2514/2.2437
http://dx.doi.org/10.2514/1.35770
http://dx.doi.org/10.2514/1.35770
http://dx.doi.org/10.2514/1.35770
http://dx.doi.org/10.2514/1.26018
http://dx.doi.org/10.2514/1.26018
http://dx.doi.org/10.2514/1.26018
http://dx.doi.org/10.2514/1.41551
http://dx.doi.org/10.2514/1.41551
http://dx.doi.org/10.2514/1.41551
http://dx.doi.org/10.1137/S1064827501387826
http://dx.doi.org/10.1137/S1064827501387826

[8] Eldred, M. S., and Constantine, P., “Evaluation of Non-Intrusive
Approaches for Wiener-Askey Generalized Polynomial Chaos,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, AIAA Paper 2008-1892, Schaumburg, IL,
2008.

[9] Witteveen, J., Loeven, A., and Bijl, H., “An Adaptive Stochastic Finite
Elements Approach Based on Newton–Cotes Quadrature in Simplex
Elements,”Computers and Fluids, Vol. 38, No. 6, 2009, pp. 1270–1288.
doi:10.1016/j.compfluid.2008.12.002

[10] Haugh,M., “Variance ReductionMethods II,”Monte Carlo Simulation:

IEOR E4703, Columbia Univ., 2004, pp. 1–20.
[11] Kocis, L., and Whiten, W. J., “Computational Investigations of Low-

Discrepancy Sequences,” ACM Transactions on Mathematical

Software, Vol. 23, No. 2, 1997, pp. 266–294.
doi:10.1145/264029.264064

[12] Sobol, I., “Uniformly Distributed Sequences with Additional Uni-
formity Properties,” USSR Computational Mathematics and Math-

ematical Physics, Vol. 16, No. 5, 1976, pp. 236–242.
doi:10.1016/0041-5553(76)90154-3

[13] Africano, R., “A Modified Monte Carlo Procedure,” AIAA Journal,
Vol. 6, No. 6, 1968, pp. 1111–1117.
doi:10.2514/3.4681

[14] Wolpert, D., “StackedGeneralizations,”Neural Networks, Vol. 5, No. 2,
1992, pp. 241–260.
doi:10.1016/S0893-6080(05)80023-1

[15] Breiman, L., “Stacked Regressions,” Machine Learning, Vol. 24,
Kluwer Academic Publishers, Boston, 1996, pp. 49–64.

[16] Smyth, P., andWolpert, D., “Stacked Density Estimation,” Proceedings
of the 1997 Conference on Advances in Neural Information Processing

Systems 10, NIPS ’97, MIT Press, Cambridge, MA, 1998, pp. 668–
674.

[17] Kim, K., and Bartlett, E. B., “Error Estimation by Series Association for
Neural Network Systems,” Neural Computation, Vol. 7, No. 4, 1995,
pp. 799–808.
doi:10.1162/neco.1995.7.4.799

[18] Rajnarayan, D., and Wolpert, D., “Exploiting Parametric Learning to
Improve Black-Box Optimization,” 2007.

[19] Clarke, B., “Comparing BayesModeling Averaging and Stacking when
Model Approximation Error Cannot Be Ignored,” Journal of Machine

Learning Research, Vol. 4, 2003, pp. 683–712.
[20] Haugh, M., “Variance Reduction Methods I,”Monte Carlo Simulation:

IEOR E4703, Columbia Univ., 2004, pp. 1–18.
[21] Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification,

2nd ed., Wiley, New York, NY, 2001, pp. 483–485.
[22] Economon, T., Copeland, S., Alonso, J., Zeinali,M., andRutherford,D.,

“Design and Optimization of Future Aircraft for Assessing the
Fuel Burn Trends of Commercial Aviation,” 49th AIAA Aerospace

Sciences Meeting, AIAA Paper 2011-267, Orlando, FL, Jan. 2011.
[23] Kroo, I., “An Interactive System for Aircraft Design and Optimization,”

Aerospace Design Conference, AIAA Paper 1992-1190, Irvine, CA,
1992.

[24] Colonno,M., andAlonso, J., “SonicBoomMinimizationRevisited: The
Robustness of Optimal Low-Boom Designs,” 13th AIAA/ISSMO

Multidisciplinary Analysis Optimization Conference, AIAA Paper
2010-9364, Fort Worth, TX, Sept. 2010.

R. Ghanem
Associate Editor

TRACEY, WOLPERT, AND ALONSO 2023

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n

A
ug

us
t 8

, 2
01

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.J

05
16

55

http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1016/j.compfluid.2008.12.002
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1145/264029.264064
http://dx.doi.org/10.1016/0041-5553(76)90154-3
http://dx.doi.org/10.1016/0041-5553(76)90154-3
http://dx.doi.org/10.2514/3.4681
http://dx.doi.org/10.2514/3.4681
http://dx.doi.org/10.2514/3.4681
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1162/neco.1995.7.4.799
http://dx.doi.org/10.1162/neco.1995.7.4.799
http://dx.doi.org/10.1162/neco.1995.7.4.799
http://dx.doi.org/10.1162/neco.1995.7.4.799
http://dx.doi.org/10.1162/neco.1995.7.4.799
http://dx.doi.org/10.1162/neco.1995.7.4.799

