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Abstract-We present two complementary analysis models 

to study the effect of programmatic management decisions 

on the distribution of net present value for a fractionated 

satellite constellation. The goal is to begin development of 

an approach to quantify when system attributes associated 

with design flexibility have realizable benefits for space sys­

tems. The first approach is a heuristics-based decision model, 

which utilizes a Monte Carlo simulation to produce value 

distributions for satellite operator decision sets; the second 

approach is a multi-stage decision process model, which 

utilizes a dynamic programming algorithm to find value­

optimal decisions. We use a generic Department of Defense 

(DoD) terrestrial weather satellite program as a case study 

for analysis. We find evidence that technological evolution 

of a fractionated satellite system within the scope of a single 

program may not be desirable due to cost and schedule risks. 
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1. INTRODUCTION 

Research & Development Investment 

This paper seeks to provide insights to a hypothetical decision 

maker in the Defense Advanced Research Projects Agency 

(DARPA) or an equivalent funding organization for research 

and development. DARPA is a technology development 

agency for the U.S. Department of Defense, and focuses 

on funding programs to bridge fundamental discoveries and 

new capabilities. Program managers from the Agency fund 

researchers at private companies and universities to bring 

new technical concepts into a useful state for the American 

technology base and national security programs. 

Fractionated Satellites 

While ideas regarding networked satellites have existed for 

some time, DARPA defines the concept of spacecraft frac­

tionation as "a cluster of satellites that are linked together 

via a wireless network, creating a virtual spacecraft with the 

same or better capability than a traditional monolithic, multi­

payload spacecraft"[I]. 

This paper considers the operation and management of such 

a space mission architecture, whereby spacecraft function-



ality for a generic meteorological satellite system with two 

payloads is distributed across three wirelessly-interacting 

spacecraft modules operating together in orbit. DARPA's 

Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft 

United by Information Exchange (F6) Program focuses on 

developing and maturing the technology necessary for this 

type of mission approach [2][3][4][5]. In the F6 concept, each 

module corresponds to a particular subsystem or package 

of subsystems with the capability to contribute a specific 

functionality to the overall system such as communications, 

computing, or a payload. 

Two types of fractionation may be defined when comparing 

monolithic and fractionated satellite systems: heterogeneous 

fractionation and homogeneous fractionation. Heterogeneous 

fractionation can be qualitatively expressed as the degree to 

which the original spacecraft is disaggregated into indepen­

dent modules with different functions (such as individual 

payload, cOlmnunications, and data handling modules). Ho­

mogeneous fractionation can be understood as the degree to 

which the original system is decomposed into functionally 

similar modules (such as multiple identical payload modules) 

[6]. 

Value Centric Design 

Value models are increasingly part of the design and analysis 

process for aerospace systems [7]. The practice of value­

centric design is commonly defined as the incorporation of 

value metrics, in particular net value and variance in net 

value, into the systems engineering and engineering design 

process [8]. This approach can be contrasted to traditional 

spacecraft engineering practice, which focuses on cost min­

imization subject to fulfillment of engineering requirements. 

Value-centric design seeks to incorporate prograrmnatic and 

operational uncertainty into the assessment of a program 

through probabilistic analysis of cost, schedule, and system 

operation. Value-centric methodologies also offer a basis 

to pursue quantification of system attributes associated with 

design flexibility, such as a system's capacity for adapting to 

different missions or receiving technological upgrades - fac­

tors that the common requirements-driven, cost-minimization 

approach does not handle well [8]. 

2. ANALYSIS GOALS & SCOPE 

Risk of Concern 

The risk of concern considered in this analysis is the relative 

net present value distribution given different user decisions 

regarding a meteorological satellite system using DARPA's 

fractionated mission architecture. 

This metric is important to provide the technology-investment 

decision maker with knowledge of risk associated with user 

management of a completed system. We utilize simulation 

to characterize the management decisions for a fractionated 

satellite system; this contrasts with approaches that simulate 

only the performance of spacecraft modules (neglecting or 

simplifying decisions about when and how modules are de-
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ployed). Our approach begins to enable quantification of 

benefits associated with design flexibility - such as claims 

about 'upgradability' and ' adaptability' of a particular system 

architecture, and boundary conditions for when the benefits 

of these system attributes are realizable. 

Space systems that provide national security information 

should maximize value while managing for acceptable risk; 

theoretically, a system also should not cost more than the 

value of the information it provides. The Defense Depart­

ment's investment distribution across technology programs 

impacts the quality of the future systems available and their 

usefulness to the operational user. The risk of concern 

therefore addresses not just the financial risk associated with 

technology development, but the future availability of rele­

vant information resources for operational and strategic needs 

of the military. 

The simulation of value distributions given user decisions, 

and sensitivity to external factors, can inform DARPA's 

evolution of satellite technology - by focusing on mission 

regimes where benefits of fractionation are most likely to be 

realizable. 

Scope: Analysis of Programmatic Management 

This analysis aims to inform the evolution of requisite satel­

lite technology and choices for investment at specific program 

margins at DARPA. Some papers discussing the "fractionated 

satellite" approach and value centric design consider these 

subjects in the context of both technological implementation 

and DoD acquisitions practice; [9] we focus on analysis of 

multi-stage decisions by the DoD user over the life-cycle of 

a notional fractionated satellite system, and do not address 

explicitly details of DoD acquisitions practice at this time. 

Satellite systems are often procured for a certain number of 

satellites to be designed, built, and launched on specified 

dates all to fulfill an uncertain future demand. This can lead to 

increased cost and lower than expected performance when the 

satellite must be launched on a deadline for one payload while 

the other payload is immature. This issue has been recognized 

by the by the Government Accountability Office (GAO) as a 

consistent problem for DoD space acquisitions[lO]. 

A fractionated satellite architecture provides flexibility for a 

decision maker to evolve a system in response to demand 

increases and technology advancements, theoretically mak­

ing the system more valuable (generally at the cost of some 

spacecraft element redundancy). If new technology becomes 

available during the course of a program, this improved 

capability can be designed into new spacecraft modules. But 

what is the best strategy for when to design, build, and 

launch a module of a fractioned satellite? Do the benefits 

of technology updates within a program outweigh the costs 

if you could make these decisions optimally? We approach 

these key issues as a multi-stage decision process. 

The future availability of space-based assets to support the 

operational and strategic needs of military and intelligence 

programs is impacted by early-stage technology investment 

decisions by agencies like DARPA. The goal is to provide 



knowledge of system value and risk associated with user 

operation of a fractionated satellite mission, to inform better 

the development process. 

Direct analysis of DoD acquisitions or a detailed comparison 

of a fractionated mission with a traditional "monolithic" 

approach would require detailed DoD data and are outside the 

scope of this initial analysis. The modeling and simulation 

approaches developed here are meant to be a starting point 

for analysis, and present the beginning of a process to identify 

regimes when fractionated systems become viable. 

Case Study: Defense Meteorological Satellite System 

This analysis uses a generic Department of Defense (DoD) 

terrestrial weather satellite program as the case study. This 

type of program is applicable for a value-based analysis 
because recent government meteorological satellite programs 

highlight the particular cost and schedule growth issues asso­

ciated with DoD space systems acquisition generally. (For 

example, the GAO notes that the National Polar-Orbiting 

Operational Environmental Satellite System (NPOESS) was 

originally estimated to cost $6.5 billion, and at latest estimate 

is now expected to be $13.2 billion; launch of the first 

NPOESS satellite has likewise slipped 5 years[lO]). Pro­

grams like NPOESS and the Defense Meteorological Satellite 

Program (DMSP) are also highly valued DoD programs with 

fairly public information about their missions, payloads, and 

costs which makes generating realistic models feasible. 

We model a generic version of the Defense Meteorological 

Satellite Program (with simplified environmental data prod­

ucts), implemented as a fractionated cluster with 3 mod­

ules; the satellite modules correspond to imagery data, at­

mospheric profile data, and infrastructure support. This is 

consistent with key meteorological requirements from both 

NPOESS and DMSP[II][ 12]. The first module hosts a 

VisiblelInfrared Imager (for example, the Advanced Very 

High Resolution Radiometer (AVHRR», the second module 

hosts a microwave sounding unit (for example, the Advanced 

Microwave Sounding Unit-B (AMSU-B», and the third mod­

ule holds the primary communication direct downlink to the 

ground[ 13][14][15]. 

Each module utilizes a common bus structure with power, at­

titude control, thermal and propulsion. The payload modules 

require more power for larger payload power consumption 

and better attitude control for tighter pointing requirements, 

while the support module requires a larger on-board computer 

to act as the primary storage, processing and command center 

for the system. These characteristics are addressed as the 

model inputs (see Modeling Approach). The payload mod­

ules have a backup S-band command/telemetry system and 

backup computers for data storage and routing if the support 

module fails. The modules fly in a polar, sun-synchronous 

orbit. 

Modules composing a fractionated satellite system are as­

sumed to orbit in sufficient relative proximity to communicate 

with each other directly (for example via a mesh network -

though this approach would not be necessary, and other ap­

proaches including a routing network could work for larger-
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diameter constellations) and experience approximately the 

same orbit perturbations. A simple approach is to place 

all three modules in the same circular orbit with a constant 

phase offset between the central module and leading and 

trailing modules. In this configuration, the each module 

would maintain the same relative position to the other two 

throughout the entire orbit[16]. (NASA currently utilizes 

a similar orbital configuration for its A-Train formation of 

major Earth-observing satellites, though with a larger orbital 

phase offset than would be utilized here)[ 17]. 

Other discussions[2] of fractionated systems have suggested 

utilizing co-altitude circular orbits with small relative inclina­

tion and eccentricity differences, which would enable payload 

modules to exhibit cross-track and in-plane motion relative to 

the support module[16]. 

Because our case study utilizes a sun-synchronous orbit for 

meteorological data collection, and does not require co­

orbiting spacecraft modules, we can focus for simplicity on 

the former case: each of the three modules in the same 

orbit-track, with the communications module in the central 

position and the imager and atmospheric profiling payload 

modules leading and trailing, respectively. Each payload 

satellite module flies with a constant orbital phase offset from 

the cOlmnunications module. 

3. MODELING ApPROACH 

Overview: Our Approach 

We present two complementary approaches to model pro­

gram management as a multi-stage decision process. The 
first approach, Heuristics Based Decision Making (HBDM), 

models management of the system as a Markov process and 

applies heuristics to model operator decisions, and corre­

sponding state transition functions, in each state. The overall 

state transition process retains the Markov property because 

the state transition function references only the current state 

and the action selected. This does not model a "decision 

process" directly, however, because no optimization process 

occurs to select the highest-value action at each time period; 

predefined heuristics specific to the simulation are referenced 

in each state to automatically generate the action. 

The second approach, a Markov Decision Process (MDP) 

model, approximates management of the system as a dis­

crete time stochastic control process and utilizes a dynamic 

prograrmning algorithm to approximate a decision maker's 

selection of optimal actions at each time step. Like the 

HBDM approach, it models the transitions between states 

as a Markov process because the state transition function 

references only the current state and the action selected. 

This method, while computationally limited by the number 

of elements in its state space, allows for optimal decisions 

and outcomes to be determined that otherwise may have been 

ruled out or left unaccounted for in development of traditional 

decision heuristics. 

Both models utilize the same case study, a standard set of 
input modeled uncertainties, and value function. The HBDM 

tool provides statistics from which one can derive the best 



heuristics to guide management decisions, while the MDP 

model automatically selects the best actions and provides 

NPV calculations for various starting states and future ac­

tions. 

In future studies, the results from the MDP tool can be input 

into the HBDM tool to compare results and iterate the HBDM 

process. The results from each model complement each other 

and in most cases provide similar results. 

Model Inputs 

Each model utilizes a set of commonly modeled uncertainties 

and a value function. The uncertainties include reliability, 

cost, launch failures, user demand and technology evolution. 

The HBDM models uncertainty in the timeliness for pro­

curement (development and build times), which is currently 

assumed constant in the MDP model due to state space 

limitations. Each model also uses the same value function 

which equates amount of GBytes of data transmitted to the 

ground for the entire system into a dollar amount discounted 

to the start of the program. It is this value minus the costs that 

we want to optimize while limiting the variance. 

1 .  Reliability: The reliability of each module is the proba­

bility that the module has not failed up to a specified time 

in its life. The probability of satellite module failure is 

modeled as a Weibull distribution with alpha (0:) and Beta 

((3) parameters. 0: is a scale parameter with units of years and 

is proportional to the mean mission duration. 0: is specific 

to each subsystem and module. (3 is a unitless parameter 

related to the design robustness. A value of (3 equal to 

1 .0 is characteristic of a single string design, while typical 

values are between 1 .4 and 1 .7 for government satellites [1 8]. 

We use a (3 value of 1 .4 due to minimal redundancy per 

subsystem and module. The probability of failure at any point 

in time is the probability distribution function (pdt), while the 

probability that the module will fail before a specific age or 

time in its life is the cumulative distribution (cdt). Reliability 

can then be calculated according to: Reliability = 1 - F(o:, (3, 
time). Figure 3 shows the Wei bull pdf, cdf, and resulting 

reliability for example parameters 0: = 8.6 and (3 = 1 .4. 

For modeling purposes the team assumed each module 

contains two major subsystem elements: a common bus and 

unique subsystem. Each module has a common bus with 94% 

reliability over 5 years. Module 1 has a payload subsystem 

with 91 % reliability over 5 years, Module 2 had a payload 

subsystem with 90% reliability over 5 years, and Module 3 

had a communication (comm.) subsystem with reliability of 

92% over 5 years. These are fairly high reliability values 

but not uncommon for government satellites. The subsystem 

reliabilities are assumed to be independent so the module 

reliability can be calculated by multiplying each subsystem's 

reliability together. These are calculated for the 3 modules 

according to: 

RModulel = RCommonBus * Rpayloadl 

RModule2 = RCommonBus * Rpayload2 

RModule3 = RCommonBus * RComm 
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Figure 1. Weibull pdf, cdf, and resulting reliability: The 

Wei bull probability distribution function (pdt) represents the 

probability of failure at each point in time (X axis). Alpha 

and Beta are used to shape this distribution. The cumulative 

distribution function (cdt) represents the probability of failure 

within X number of years. Reliability equals one minus the 

cdf. 

Component 5·Yr Reliab. Alpha (Yrs) Beta 

Module 1 0.86 1 8.8 1 .4 

a. Common Bus 0.94 36.5 1 .4 

b. Payload 1 0.91 27.0 1 .4 

Module 2 0.86 1 8.8 1 .4 

a. Common Bus 0.94 36.5 1 .4 

b. Payload 2 0.91 27.0 1 .4 

Module 3 0.86 1 8.8 1 .4 

a. Common Bus 0.94 36.5 1 .4 

b. Comm Payload 0.91 27.0 1 .4 

System I 0.63 I 8.6 I 1.4 
Table 1. Reliability Parameters for Each Subsystem, 

Module, and System: Each Module is comprised of 

independent subsystems whose reliabilities multiply 

together. Similarly, the system reliability is the product of 

each module reliability. 

Each module failure rate can be modeled as a Weibull dis­

tribution with alpha and Beta parameters, as summarized in 

Table 1 .  

Finally, we calculate the probability of failure in each 

time period, given the module has not already failed. This 

calculation is performed using Equation (1 ): 

!(t)l/(t _ 1) = 

F(o:, (3, t) -F(o:, (3, t -1) 
(1 ) 

1-F(0:,(3,t-l) 

Where t is the current time in years, t - 1 is the current 

time minus one timestep, ! is the probability of failure, J is 

the probability of no failure, F is the cumulative distribution 



Cost Type Module 1 Module 2 Module 3 
Develop. (NRE) $46. 12M $46. 12M $38.77M 

Build Cost (RE) $37.19M $37.19M $28.75M 

Maint.lStorage $0.95M/yr $0.95M/yr $0.76M/yr 

Launch $7.83M $7.83M $7.83M 

Operations $2.51M/yr $2.51M/yr $3.3M/yr 

Table 2. Costs for Each Module: Costs are broken out into 

NRE, RE, Maintenance/Storage, Launch, and Operations for 

each of the 3 modules. 

function, 0: is the Weibulll distribution scale parameter with 

units of years, and f3 is the Weibull distribution unitless 

parameter related to design robustness. 
At this point in development of the MDP code, the average 

probability of failure given that the module did not fail in the 

previous timestep over 15 years was used for each timestep. 

2. Demand: One of the primary reasons for analyzing 

programmatic decisions with a value centric methodology is 
to understand the effects of a change in user demand. We 

model demand in three ways for the HBDM model analysis: 

1) increasing 10% every year, 2) increasing by 3% every year 

and 3) maintaining a constant demand rate. For the MDP 

model, at this stage in development, we model a 10% demand 
increase every two years. 

3. Cost: Costs are categorized as 5 items: development costs 

(non-recurring engineering (NRE)), build cost (recurring en­

gineering (RE)), maintenance/storage costs to maintain an 

on-ground spare, launch costs, and operation costs to "fly" 
the module in orbit. To develop an initial set of cost model 

inputs, we create a mass and parametric cost estimate for a 

monolith satellite based on Tables 20-4, 20-5, 20-9 in Space 

Mission Analysis and Design (SMAD) scaled for FY2010 
dollars [19][20]. This includes NRE and RE cost breakdowns 

by subsystem. We then allocate the mass to each module 

according to its functions. We leveraged a Geostationary 

Operational Environmental Satellite (GOES) distribution pro­

vided by DoD staff to assist in this process. GOES is a 
geosynchronous satellite and has much larger mass estimates, 

but it provides a basis for allocating a mass percentage to each 

module based on functionality. We calculate the costs for 

each module by multiplying the monolith costs by the ratio 

of module mass to monolith mass. It is assumed that each 
payload on modules 1 and 2 have approximately the same 

mass and bus requirements resulting in the same total module 

mass and costs. Storage costs are assumed to be 5% of the RE 

bus costs per year based on engineering judgment. Launch 

costs are based on Delta 2 launch costs per kilogram as 
described in Table 20-14 of SMAD and scaled for consumer 

inflation from FY 2000 to FY 2010 [19][20]. The operations 

costs are derived from all other costs and Table 20.9 of SMAD 

[19]. The costs are sununarized in Table 3. 

We also assume a 95% learning curve for the recurring costs 

in the HBDM model, approximating easier, and therefore 

less expensive, production of new identical modules [21]. 

We model new technology levels as an increase of 50% in 
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capability. When upgrading to new technologies we assume 

one increment of development (NRE) cost is incurred; we 

assume that the NRE costs are equal for an increase in any 

one level of technology, because the operator is building 
a new module with extensive heritage (only the payload is 

being upgraded). However, for each level in technology 

advancement that is "jumped" an additional factor of 1.5 is 

applied to the NRE costs to simulate greater differences in 

module architecture. For example, if the current module is at 
technology level 2 and it is decided to upgrade to technology 

level 5, the total NRE cost will be N REbase * 1.52. 
All of the costs are sununed at each time period and dis­

counted to time 0, the start of the simulation. We assume 
a discount rate of 10% compounded yearly. 

For the HBDM model, the team simulates cost uncertainty 

by modeling the NRE and RE costs with a Beta distribution. 

The team allows the minimum cost to be 80% of the NRE 

or RE cost and the maximum cost to be up to 300% of the 
NRE or RE cost. Based on iterative interviews with aerospace 

engineers, we select a Beta distribution with alpha parameter 

of 1.1 and an expected value of 1.0, meaning the expected 

cost is the base NRE or RE cost. Figure 2 shows this cost 

Beta distribution. 
4. Launch success: We use a 92% probability for launch 

success. This includes a 1 % infant mortality rate for satellite 

modules and a 93% launch success rate based on based on 

an average of established launch vehicle success rates [22]. 

Both HBDM and MDP modules currently model spacecraft 
module launches as separate events. 

5. Technology Development: An advertised benefit of a 

fractionated system is that each spacecraft module is cheaper 

than an entire system and can be developed and built with the 

latest technology in order to upgrade the entire system. 
We model technology upgrades by considering the effects of 

new technology on data output. Specifically, we model an 

increase in technological sophistication as an increase in data 



output from an instrument per unit time - and thereby an in­
crease data collection rate for the overall instrument module. 
Similarly, a technology upgrade in a support module corre­
sponds to an increased capability to handle and downlink data 
from the system's instruments. This assumption allows us to 
represent changes in user needs regarding both quantity of 
data and technological sophistication of instruments in the 
same units (bytes per day). This also maps units of user 
demand to our measurement of system capability. If user 
demand increases, the simulations can develop and build a 
new modules to provide more data collection and throughput 
to the ground. 
Each technology level represents a 50% improvement over 
the old technology [23]. 
In the MDP code we model each module as able to be 
upgraded to a higher technology level at any point over 
the mission, but only once (currently due to state space 
limitations in the MDP model). In the HBDM code, satellite 
modules can be upgraded at any point, and as many times as 
needed to sequentially-higher technology levels. 
6. Value Function: Conducting a value-centric design analy­
sis on a generic mission, in the absence of fully-defined mis­
sion parameters, is a significant challenge given uncertainties 
in both cost and value of the system. We hope to provide 
a framework for future development with improved model 
inputs. While parametric methods to estimate spacecraft 
costs and reliabilities exist and are used, these estimates of 
these variables are more precise when tied to the specifics of 
any mission. In the absence of specific engineering designs 
for each spacecraft module, it is necessary to generate a rough 
approximation of the satellite cost; similarly, absent specific 
mission requirements, a rough approximation of data value to 
the decision maker must be generated. We utilize a common 
basis to compare differing mission management decisions for 
a generic mission architecture and value function. For a 
decision maker seeking to apply these methods to his own 
project, either more accurate approximations for cost and 
value could be plugged in to our analysis tools or the decision 
maker could see if our assumptions match his own system, 
and use our results accordingly. 
Our unit of comparison between cost and the user's valu­
ation of mission data is a monetary value, which requires 
a translation of the value of the data into a dollar amount. 
This analysis could be performed equivalently using a non­
monetary valuation scheme, though a monetary valuation is 
a logical approach because we possess cost models for the 
program that work in units of dollars. A similar approach, 
utilizing different units, might map system costs and benefits 
into "military utility" instead of dollars. 
The value gained from the meteorological satellite system 
is modeled as an amount of data transmitted back to earth 
(approximating the data required to produce environmental 
data records for end-users). We model a user "demand" 
for data in bytes per day from the system, and similarly 
model a capability of the system to provide data in bytes per 
day to meet the user demand. To match this approach we 
model technology upgrades by considering the effects of new 
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technology on data output. Specifically, we model an increase 
in technological sophistication of an instrument module as an 
increase in data collection rate for that spacecraft. Likewise, 
a technology upgrade for a support module corresponds to an 
increased capability to process data from the system's instru­
ments and transmit those data back to earth. This assumption 
allows us to represent changes in user needs regarding both 
quantity of data and sophistication of instruments in the same 
units (bytes per day). This also maps units of user demand to 
our measurement of system capability. 
To estimate the worth of the returned data, and again as 
a preliminary input, we model the value provided by one 
year of fully meeting user data-needs as approximately 1.5 
times the cost of the system for one year. We observe a 
willingness to pay up to 50% cost overruns in DoD space 
acquisitions, and use this fact to infer a value for successful 
DoD space programs as approximately 150% of the original 
cost bid. (Note that for the most recent DoD involvement in 
a meteorological system, NPOESS, there was approximately 
100% cost-overrun. This seemed impractical to infer as a 
rule. See [10]). This approach can be scaled according to user 
needs or future methods to elicit more precise valuations, as 
necessary, for DoD space systems. 
We model a baseline yearly cost, given a 5-year nominal 
lifetime for each of the modules, as the following (where 
AAC: Amortized Annual Cost): 

1 3 3 

AAC = 5 * [L (Module i NRE) + L (Module i RE) 

3 

i=l i=l 

+ L (Module i Launch Cost) ] + 3 Module Ops 
i=l 

(2) 

We model the nominal daily total data returned from the 
system as 100 GB/day (see model inputs). We therefore 
calculate the fully operational cost per GByte per day (FOC) 
as a function of the Amortized Annual Cost: 

Amortized Annual Cost 
FOC = ----::-:-�_::_:_--365/100 (3) 

The user valuation of the returned data is then l.5 times this 
value. 
Finally, instead of assuming that all data have the same 
value, we assume four different classes of data, each valued 
differently as a function of the percent capacity at which the 
space system is operating. This models initial data, and the 
ability to produce some Environmental Data Records (EDRs) 
rather than none, as having greater marginal value to the DoD 
user than each additional EDR when the system operates 
at full capability. (A more detailed implementation of this 
model, tied more closely to an operational mission, could bin, 
and value, data by discrete requirements for specific EDRs. 
This paper is more general in focus and approximates this 
approach with a continuous value function). 
Data downlinks of less than 10% of the nominal system 
capability return zero value, approximating the fact that such 
minimal data would constitute incomplete global coverage by 
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Figure 3. Value Function: Value is modeled as $ for the 

amount of data transmitted back to the Earth. The value 

provided by one year of fully meeting user data-needs (100% 

Capability) as approximately 1.5 times the cost of the system 

for one year. There are 4 Value data slopes representing 

importance of varying levels of capability. 

the instruments and would be insufficient to form Environ­

mental Data Records for end users. We assume that an ability 

to collect between 10% and 30% of the systems capability 

has a high marginal data value. Data rates fulfilling 30% to 

100% demand are considered medium value data, important 

but with marginal value less than that of the first 10-30% 

capability. The high-value data are marginally worth 5 times 

as much as the medium-valued data. Data returns greater than 

the nominal user demand also provide value, but these low­

valued data are marginally worth 20% of the medium-valued 

data. Using our cost estimates to find amortized annual cost, 

this approach yields four value slopes for each of the data 

classes, as a percent of nominal system demand met (to two 

significant figures): 

• Less than the minimum: $O/GB, if data return � 10% of 

full system design capability 

• High-Valued Data: $5500/GB, for the first 30% of the de­

manded data (given that more than 10% of data are provided) 

• Medium-Valued Data: $llOO/GB, for data between 30% 

and 100% of demand 
• Low-Valued Data = $200/GB, for any data provided above 

the demand of the system 

7. Develop and Build Times (heuristics only): For the HBDM 

code we model both development and build times with Beta 

distributions in order to represent uncertainty in these times. 

Figure 3 shows these distributions. The expected develop 

time is 2 years and the expected build time is 2.5 years; both 

times, however, have a significant spread to them, providing 

uncertainty. In addition, when multiple modules are built, 

the uncertainty reduces in the build time becoming more 

narrowly distributed around the expected value of 2.5 years. 

These values are assigned based on small satellite engineering 
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Figure 4. Beta Distribution for Development Times: The 

time to develop a module is an uncertainty and is modeled 

with a Beta distribution. 
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Figure 5. Beta Distribution for Build Times: The time to 

develop a module is an uncertainty and is modeled with a 

Beta distribution. 

experience. For the MDP model, the development and build 

timelines are currently modeled as constant and assumed to 

be one timestep (2 years). 

Model #1: Monte Carlo Simulation with Decision-Maker 
Heuristics 

The first of the two analysis methods is Heuristic-Based 

Decision Making (HBDM) model. For the HBDM model, 

we develop a set of parameterized rules which define how 

the decision maker adjudicates decisions in reaction to the 

state of the system. As an example, one heuristic rule 

sets a "minimum number of spares" that the decision maker 

maintains at all times. The HBDM simulates probabilistic 

changes to the system (such as in-orbit module failures) as 

well as reactions to those changes by the decision maker 

based on the set of parameterized heuristics. 

Simulations model a fifteen-year program with four time 

steps per year. In each time step, the HBDM first updates 



the demand, checks to see if any under-construction modules 

are complete and if the any new designs have completed 

development, and then stochastically determines whether any 

of the modules in orbit have failed. Given the new state 

of the system, the HBDM determines decisions made using 

the input heuristics and calculates the incurred costs based 

on these decisions. Lastly, the code calculates the total 

value (time discounted) gained from the in-orbit system for 

providing data to the ground. Decisions fall into three main 

categories: launching spare modules into orbit, developing 

new technologies, and building additional spares. 

The specific heuristics parameters and their use are as fol­

lows: 

Launch: Three heuristics are used while making launch 

decisions: an age threshold, a minimum demand threshold, 

and a maximum demand threshold. First, the decision maker 

checks to see if the constellation is meeting the current 

demand for data in each of three categories: data from module 

1, data from module 2, and support capability for the two 

modules. The age threshold, if set, causes the decision maker 

to ignore modules older than the age threshold while calculat­

ing data output. This allows the replacing of aging modules 

preemptively rather than waiting until modules fail. If any 

piece of the system is unable to meet a higher percentage of 

demand than set by the "minimum demand" threshold, the 

code then launches available spares of the appropriate type 

until either all of the spares are used or the constellation 

exceeds the "maximum demand" threshold. The minimum 

threshold allows a tolerance in meeting demand (making 

meeting demand a "soft cap" rather than a hard one), and 

the maximum threshold simulates planning ahead for future 

demand increases. Every time a spare is launched, the code 

stochastically determines the success or failure of the launch 

and in either case adds the launch costs to the total costs. 

Develop: There are two heuristics used to decide when to 

design new modules at a higher technology, "MinTechDe­

mandMult" and "MaxTechDemandMult." Similar to the 

launch decisions, these two act as a soft cap for meeting 

demand. The decision maker calculates how much demand 

could be met with a fully functioning constellation in orbit 

with the current technology levels. If the constellation is 

unable to meet the demand times the "MinTechDemandMult" 

(even with a fully functioning constellation), the decision 

maker decides to upgrade technology. The decision maker 

calculates demand times the "MaxTechDemandMult," and 

choses the cheapest technology capable of meeting that level 

of demand. When it is decided to develop a new technology, 

the development time and cost are determined stochastically 

as described above. 

Build: Three heuristics guide the build decisions. The first 

heuristic is "wait for new technology." With this parameter 

turned on, if there is a technology under development for 

a certain module type, new spares are not built until the 

technology has finished development. The second heuristic 

is a requirement on the number of on-ground spares for each 

individual module type. If this number is greater than zero, 

then the code merely checks to see if the requirement is being 
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met. If it is not, then new modules of the highest designed 

technology level are built until the minimum number of 

spares is met. If there is no requirement on the number of 

spares, then the code first checks to see if there is already 

a spare of that type available. If no spare is available, it 

checks to see if demand for that module type is being met, 

and decides to build additional spares if demand is not being 

met. The third heuristic is that older modules in orbit can 

be ignored while making these build decisions (like in the 

"launch" decision section). When new modules are built, the 

build cost and build time are determined stochastically. 

Through Monte Carlo simulations, the distribution of value 

conditioned on each set of heuristic parameters is determined. 

The optimal set of heuristic parameters can be found by 

performing Monte Carlo simulations with different sets of 

parameters. The HBDM's relative advantage is the ability to 

incorporate detailed models of uncertainty when simulating 

the satellite system, and that results from the HBDM translate 

directly into potential subcontractor requirements. The rela­

tive disadvantage of the HBDM is that decision rules must be 

specified outside the simulation. The heuristics that produce 

the most favorable value distributions are therefore really 

"best rules of thumb" within the guidelines of the established 

heuristics, rather than a truly optimal set of management 

decisions. 

Model #2: Markov Decision Process & Dynamic Program­

ming Algorithm 

The second approach models management of the satellite 

system as a Markov Decision Process. We utilize a dynamic 

programming algorithm to determine an optimal expected 

value for the system given any initial state, and then run 

an iterated stochastic (Monte Carlo) simulation across the 

dynamic progranuning results to obtain distributions over the 

program value. 

A dynamic programming (DP) algorithm is an optimization 

method that can be applied to problems that have discontinu­

ous variables, non-convex feasible regions, and are nonlinear 

[24][25][26]. A DP algorithm solves problems by combining 

solutions to sub-problems: the algorithm partitions a problem 

into overlapping sub-problems, finds optimal solutions for 

the relevant sub-problems, and then combines the solutions 

to sub-problems to find an overall optimum. 

For a multi-stage decision process, the DP algorithm works 

by considering the value of each possible state in the final 

time period, and then works backward to assess the value 

of each state in preceding time periods. In each state in an 

earlier time period, the algorithm finds the action which leads 

to the highest future expected value; the algorithm then stores 

the value of the immediate state sUlmned with an expectation 

over future states given the optimal action. 

1. State Space: The MDP approach models each system 

state as a vector consisting of twelve binary elements corre­

sponding to the functionality, technology level, existence of 

a ground-spare, and technology level of the ground-spare for 



each of the three module types: 

State = {F1,F2,F3,TM1,TM2,TM3, 

81,82,83, T81, T82, T83} (4) 

The state space models the functionality of each on-orbit 

satellite module (Fl, F2, F3) as either functional or non­

functional. The overall constellation capability to provide 

meteorological data for a specific time is calculated based on 

the number and type of functioning modules. This models 

degraded capability (partial failure) modes for the entire satel­

lite constellation, but not individual modules. Technology 

level in each module (TMi and TSi) is modeled as either a 

"baseline" technology level at which the operator entered the 

program, or an upgraded technology level, which the operator 

can access for additional cost. We model the upgraded 

technology level as a constant increase in capability, which 

can be accessed with decreasing cost over time. Finally, the 

existence of an on-the-ground spare for each module type (S i, 

S2, S3) can occur when the user has previously decided to 

build, but not yet launch, a particular module type. 

A state space is generated to encompass all 4096 

mathematically-possible states (212 = 4096). With simple 

constraining heuristics, corresponding to physically-possible 

states, only 729 states may ever be inhabited by the system. 

2. Actions: To move between states, the decision maker 

selects an action. Actions are modeled using an action vector 

with six binary elements: 

Action = {B1,B2,B3,T1,T2,T3,L1,L2,L3} (5) 

The action vector carries decisions regarding whether to 

procure a new satellite of any (or multiple) of the module 

types (Bi, B2, B3) and, if procuring a particular module type, 

whether to do so at an upgraded technology level (Ti, T2, 

T3). A second module cannot be procured if an on-ground 

spare of that type already exists. The action vector also carries 

a decision to launch for each module type (U, L2, L3). The 

decision to launch a module can only occur if a spare of that 

type already exists (i.e., the relevant module has already been 

procured). Launches are currently modeled as independent 

events; if more than one module is launched in the same time 

period they are assumed to launch on different rockets. 

3. State Transition Function: The MDP model utilizes a 

probabilistic state transition function. Given a current state 

and an action, the state transition function produces a proba­

bility distribution over possible states in the next time period. 

This probability distribution over future states is known to the 

decision maker, and actions are chosen to maximize future 

expected value. For example, the decision maker who is 

considering launch of a replacement satellite module would 

know in advance the probability of launch success. 

4. Dynamic Programming Solution Process: Management 

of the satellite constellation can be represented as a multi­

stage decision process, in which the decision maker's actions 

probabilistically influence changes in system state between 

time periods (Figure 6). The DP algorithm starts by calcu­

lating the present value associated with each possible state in 
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Figure 6. Multi-Stage Decision Process: MDP models 

decisions at every step to change the resulting state space. 

the final time period (Figure 7). For each state, the satellite 

constellation's available data rate is calculated from the first 

six elements of the state vector. The system capability is then 

compared to the current user demand, and a data value is 

returned using the value function. The cost for operations 

(modules in orbit) and storage (spare modules on the ground) 

are subtracted from this value. The remaining quantity is the 

user value associated with existing in a particular state at the 

final time step. 

The DP algorithm then calculates a value for each system 

state in the second-to-Iast time period (Figure 7). For each 

state, the algorithm queries all possible actions available to 

the decision maker. Each action has an associated action cost, 

and produces a known probability distribution over states in 

the next time period using the state transition function; the 

value of each possible state in the next time period was also 

calculated and saved previously. The algorithm then selects 

the action that maximizes the expected user value. 

This optimal action is then saved. The algorithm sums the 

expectation value of this "optimal" decision, including the 

action cost, with the value and cost of being in the current 

state. This provides the expected present value of being in 

the current state, given optimal actions are chosen at all points 

forward; this process is repeated for each state in the current 

time period. 

The DP algorithm then continues backward through each 

time period in a similar manner to the first period. Values 

calculated and saved in states for the first period correspond to 

the net expected value of the program given optimal decisions 

at each time step in the future. 

This general approach can be represented mathematically as 

follows. Start with calculating the value J of each state x in 

the final time period N: 

(6) 

Then calculate the value of each state in the immediately 

preceding (N - 1) time period, by selecting the action a that 
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Figure 7. Dynamic Programming Solution Method: DP 

algorithm solves the problem by starting in the final time step 

and working 'backward' to the initial time step, finding the 

optimal actions to maximize NPY. 

maximizes expected value: 

IN-1(XN-d = max [C(XN-l) 
aN-IEAN-l 

-c(a) - L P(xNla,xN-d * IN(XN) ] (7) 

xNEXN 

Repeat this process for each time period n from n=N-2 to n=l: 

-c(a) - L P(xnla, xn-d * IN(xn) ] (8) 

xnEXn 

5. Stochastic Simulation: Finally, we run iterated stochastic 

(Monte Carlo) simulations using the results of the DP solution 

to obtain a distribution over program value for each relevant 

set of program parameters. 

For this analysis, we initialize the simulation with 3 func­

tional modules on-orbit, all at the baseline (non-upgraded) 

technology level, and with no spares on the ground. The sim­

ulation then queries the optimal action for this state, which 

was saved in the DP solution process, and obtains a probabil­

ity distribution over states for the next time period from the 

state transition function. The simulation then stochastically 

determines the resulting state, and moves there in the next 

time period. The optimal action for the new state and time 

is again queried, and the process repeats through the final 

time period. At each period the state value is recorded, and 

after each state transition the action cost is recorded. These 

quantities are summed at the end to produce the realized 

program value for the stakeholder. The simulation is repeated 

one million times to obtain a distribution on net present 

value. 
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Figure 8. Representative NPV distribution for the baseline 

set of heuristic parameters: Similar plots are generated for 

various combinations of heuristic and input parameters. 

4. RESULTS & MODEL OUTPUTS 

Primary Results: Heuristics-Based Decision Making Model 

Trade studies were performed on a number of the heuristic 

parameters in order to find the best heuristics. Each instance 

of input parameters (including both heuristic parameters and 

general simulation parameters) was run ten thousand times, 

recording the gross value gained, the expenditures and the 

final net value. Ten thousand runs are enough for accurate 

measurement of the distribution on net value except at the tail 

ends of the distribution. Best and worst case outcomes are 

not accurately found by running ten thousand simulations due 

to it being extremely unlikely for everything to go perfectly 

(or perfectly wrong). It would take many more simulation 

runs (or more advanced simulation techniques) to accurately 

model a "plausible worst case scenario." It was determined 

through comparing different instances of ten thousand runs 

that the mean and standard deviation are accurate to at least 

1%. 
A histogram on net value for a baseline set of heuristic 

parameter inputs and cost breakdown is shown in Figure 8 
and 9 below. The baseline case requires one spare of each 

type to be on the ground, MinTechDemandMult is set to 0.8, 
MaxTechDemandMult is 1.5, and the demand increases by 

10% per year. 

1. Number of required spares: The first heuristic studied 

is the number of required spares to maintain on the ground. 

Three different scenarios were considered: a nominal demand 

increase of 10% per year, a smaller demand increase of 3% 
per year and a constant demand. Recall that a decision maker 

wants to maximize mean net value while minimizing risk, so 

the Pareto front is toward the lower right of Figure 11. There 

are four different spare requirements on the Pareto front. The 

requirement with the highest expected net value is requiring 

one payload spare and two support spares at all times, and the 

parameter with the lowest variance is requiring three support 

spares and no payload spares. Requiring only three support 
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Figure 9. Representative cost breakdown for the baseline 

set of heuristic parameters: Similar plots are generated for 

various combinations of heuristic and input parameters. 

spares and requiring one payload spare and three support 

spares are also on the Pareto front. All other settings for 

required spares are strictly worse in both mean net value and 

the standard deviation. 

When the demand increases more slowly (3% increase per 

year), the results change. There are now only two choices on 

the Pareto front, maintaining two spares of all three module 

types and maintaining one spare each of the two support 

spares and two support spares. The same trend continues 

when the demand remains flat (Figure 13), except maintain­

ing one spare of each is now on the Pareto front. 

These results highlight two important points. The first is that 

maintaining spares can be effective in increasing NPV while 

simultaneously reducing the variance of NPV. Requiring 

functioning spares to be kept on standby allows for quick re­

placement when modules fail in orbit. This minimizes losses 

while the module is inactive which both increases gained 

value and reduces fluctuations in value. This is especially 

true for support spares as they are used by both payload 

systems to function. On the other hand, the usefulness of the 

spares decreases the faster demand grows. With high demand 

growth, new technologies are researched to increase system 

capability. As a result, modules in orbit become obsolete 

before they fail, and thus having too many spares expends 

resources needlessly. 

2. Technology Improvement Thresholds: Three different 

cases for MinTechDemandMult and MaxTechDemandMult 

were examined. The first case, [0.8 l.5], represents the base 

case where new technology is researched when the system 

can only meet 80% of the demand and is then upgraded to 

meet at least 150% of the demand. The second case, [0 0] 
represents a case where technology is never upgraded. The 

third case [0.8 4] has the same minimum threshold as the 

first, but technology, when upgraded, increases in capability 

to four times larger than the current demand. The results 

for baseline, and medium demand increases can be seen in 

Figures 14 and 15 (when there is no demand increase there is 
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no need to upgrade technology and so all three cases yeild the 

same result). 

As in the number of spares, the optimal choice depends 

on the projected demand increase. With the baseline de­

mand increase, both not upgrading technology and making 

incremental improvements in technology are Pareto efficient. 

However, with only 3% per year demand increases, it is not 

worth it to upgrade technology at all. Due to the costs and 

variances involved in technology development, it is often 

better to upgrade technology as little as possible to both 

increase mean net value and decrease variance. 

Ancillary Results: Markov Decision Process Model 

While we focus analysis and discussion on results from the 

HBDM model, which is most similar to prior modeling ap­

proaches utilized to consider fractionated satellite technology 

programs, we present MDP model results here to indicate 

initial progress and demonstrate the benefits and feasibility 

of this modeling approach. 

After further development of the MPD model, we hypothe­

size that the DP algorithm should select strategies better than 

or equal to heuristic-sets tested in the HBDM model. At this 

stage of development, the MDP and HBDM model inputs 

diverge sufficiently to make the hypothesis not yet testable. 

The primary DP algorithm produces an expected value for 

starting with 3 modules in orbit, each at baseline technology 

level, and no spares of $1.4288*109. 
Running a stochastic (Monte Carlo) simulation with the out­

put of the DP code, using the same uncertainty functions and 

one million iterations, provides a distribution over program 

value (Figure 20): 

• Mean: 1.4287 * 109 

• Second moment (variance): 3.8150 * 1016 

• Third moment (skewness): -1.3298 * 1025 

• Min: -1.8537 * 108, Max: 1.5931 * 109 

As expected, the mean of the value distribution from the 

simulation is approximately the expected value from the DP 

algorithm. The simulation distribution is heavily skewed 

due to the minimal uncertainty models currently inputted to 

the MDP model; this statistically favors "nominal" program 

operation (things going as planned, but not better) with a tail 

corresponding to launch failure and module failure events. 

Percentiles demonstrate this behavior clearly: 

Percentiles 

5 1.0388 * 109 

25 1.3447 * 109 

50 1.4869 * 109 

75 1.5931 * 1O-v 

95 1.5931 * 109 

We also extract initial action sets from the DP algorithm 

for comparison against the HBDM model. A few trends 
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lation 

emerge when converting the optimal decisions into heuristics 

language. Given the current inputs, an optimal decision 

maker maintains three functioning modules in orbit, with 

only one of the payload modules at an upgraded technology 

level. The choice to upgrade technology is dependent on the 

demand model utilized (here demand increases at a rate of 

10% compounded every two years, set for comparison to the 

HBDM model). This also reflects the lack of distributions 

on satellite procurement time and development cost; adding 

more robust uncertainty models, akin to the HBDM model, 

may produce a new optimal strategy path for the expected­

value decision maker. 

A support spare is always maintained to allow rapid rede­

ployment of the support module if it fails, consistent with 

results from HBDM simulations. Each payload module is 

rebuilt only after a failure of the corresponding module in 

orbit. When deciding to launch, an optimal decision maker 

always launches spares to replace failed modules in orbit, 

except when the support module has failed and there are no 

support spares to launch; in this scenario, the decision maker 

waits until the support spare is rebuilt and then launches all 

available spares with the support module. 

5. DISCUSSION 

Method Interface Discussion 

The first approach, Heuristics Based Decision Making 

(HBDM), models the transition of the system across time 

periods as a Markov process. The state transition function 

references only the current state and the action selected. In 

each time step, actions are selected based on the current state 

and a set of predetermined heuristics. This does not model a 

standard "decision process" in that no optimization occurs to 

select the highest-value action at each time period; predefined 

heuristics specific to the simulation are referenced in each 

state to automatically generate the action. 

The HBDM model provides a means to test sets of man­

agement heuristics for the satellite program with detailed 
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uncertainty models. This simulates a decision maker with 

a constant approach to making decisions in response to ex­

ternal events. A limitation is that the HBDM relies on a 

single, preset group of decision rules, which neglects be­

ing highly nuanced and situation-dependent (except under 

intensive manual effort by the analyst). A second, and more 

important, limitation is that results obtained from the HBDM 

model are not necessarily optimal actions. It is therefore 

difficult to separate problems with the modeled fractionated 

satellite architecture from the problems with the management 

strategies for the architecture. It will be important in future 

F6 studies to better separate out these two effects as trade-offs 

between different architecture types are examined. 

The second modeling approach, a Markov Decision Pro­

cess (MDP) model, approximates management of the system 

as a discrete-time stochastic control process and utilizes a 

dynamic programming algorithm to approximate a decision 

maker's selection of optimal actions at each time step. 

The MDP model presents the opportunity to explore the 

viability of a fractionated mission architecture itself, indepen­

dent of operator decision quality, by simulating a decision 

process with optimal actions at each step of the program. 

The MDP model is limited, however, in the detail of uncer­

tainty models it can include while remaining computationally 

tractable. The DP algorithm searches for an optimal expected 

outcome to decisions, and therefore models a decision maker 

with flexible decision making rules dependent not only on the 

entire state of the system but also predicted future states. 

Together, the MDP model and the HBDM model allow the 

analyst to control for the effects of both decision-making 

quality and mission architecture on stakeholder value. A 

combination of these two approaches may help provide a 

means to separate and analyze the engineering limitations 

and human operation of a fractionated satellite mission in the 

future. 

Findings & Implications 

Our results reveal several trends. First, it may not be 

worthwhile to upgrade technology due to the high cost and 

variance of developing new technologies. The DP algorithm 

produces better results by upgrading one of the payload 

satellite modules, however, the algorithm does not take into 

account uncertainties in cost and development length while 

making that decision. The HBDM tool found different 

upgrade strategies to be Pareto efficient depending on the 

demand level. This difference in models suggests a cause for 

the different results: cost and schedule risk for technology 

development and module construction can have significant 

effects on the expected-value for the decision maker. 

The ability to upgrade on-orbit technology is often associated 

with the fractionated satellite approach as one of its main 

benefits. Our results, however, add caveats to meeting new 

user demand through technology upgrades. If the demand 

increase is large, then upgrading technology can provide 

greater overall value; this higher expected value, however, 

comes with a greater risk of cost overruns. If the demand 

increase is small, it is better to not upgrade technology at all, 



as the costs of upgrading technology, or the probability of 

cost overruns, may be too high to merit the additional data. 

However, both demand cases show that it's better to upgrade 

incrementally than to make significant changes in module 

designs. It is important to remember that these results do 

not address technology upgrades used to re-task a system to 

fundamentally different needs. 

The results further suggest that it is not desirable to keep 

on-ground spares for every module of the fractionated satel­

lite system in certain situations. For the baseline case of 

moderate demand increases (10% per year), maintaining no 

spares at all optimizes expected value. This is consistent 

with the fact that steady demand increases, and associated 

technology increases, will cause operators to find less value in 

building spares at rapidly-obsolete technology levels; seeking 

the value-increase associated with technology upgrades may 

limit the benefits of maintaining module spares. In contrast, 

when there is no demand increase, we find all cases on the 

pareto-front have full sets of spares. Overall, the results 

indicate that spares are desirable with stable satellite designs, 

but are less and less desirable as the configuration changes 

more rapidly. 

These results carry implications for DARPA in the develop­

ment of technologies for next-generation satellite systems. 

Realizing the benefits of fractionated satellite constellations, 

in particular, may depend on early decisions regarding sys­

tem standards. The potential benefits of upgrading on-orbit 

technology within a program lifetime may be realizable only 

if cost and schedule risks associated with technology devel­

opment are sufficiently controlled. We find that fraction­

ated satellite constellations are still particularly sensitive to 

human-induced risks associated with procurement and devel­

opment cycles. This could motivate significant technological 

standardization across spacecraft modules in a fractionated 

constellation to manage cost and schedule risk. 

Our results also indicate the utility of maintaining a backup 

ground-spare for the support module, due to its unique role 

in the system (while maintaining backups for non-unique ele­

ments of the system may cost more than the value provided). 

A common ground spare for the support module, which could 

appear as an element in multiple fractionated constellations, 

may be able to provide adequate redundancies for multiple 

programs at the same time. 

More accurate inputs are needed before any firm conclusions 

can be reached. This paper models a generic fractionated 

system with assumptions in development costs (and associ­

ated uncertainties) and demand increases. New architecture 

studies should re-examine these results with their own inputs. 

Next Steps 

Future work ought to focus extensively on improving model 

inputs, including the derivation of a value function (such as 

through user or stakeholder interviews), cost models, and 

technology models. 

A significant influence on the results of our analysis is the 

value function of the decision maker. If there are significant 
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penalties for failing to meet a certain demand threshold, or 

simply stronger incentives to meet demand, it may be that 

the cost of procuring more modules becomes dominated by 

the payout for meeting demand. In this case, it may become 

worthwhile to store additional modules to avoid paying value 

penalties when modules fail. 

Secondly, an update to the module costs, development times 

and uncertainties could change our results. We could perform 

sensitivity analyses to determine if any inflection points exist 

which would change the decisions. 

Each of the models could be improved to increase the fidelity 

of results. The most important improvement for the MDP 

model, and DP algorithm specifically, is increasing the num­

ber of uncertainties modeled. 

Certain near-term improvements are possible: 

• Expand the dynamic programming state space to include 

module age. This will allow the DP algorithm to consider 

the age of operational satellite modules when quantifying the 

expected benefit of launching new modules. It would also 

allow the DP algorithm to address more realistically issues 

such as preemptive replacement of system elements. 

• Utilize a time-dependent wei bull failure model to approxi­

mate model failure probabilities. (We have already developed 

this input model, it can be added to the MDP simulation once 

module age is stored as part of the system state). 

• The DP code can be expanded to include more realizations 

of each variable, such as multiple modules of each type in 

orbit, and multiple spares of each type on the ground. 

• The stochastic simulation of DP results can also be ex­

panded to include uncertainties additional to the state tran­

sition function. For example, a stochastic determination of 

cost could be drawn from the same distributions input to the 

HBDM model. This will produce more realistic distributions 

of value from decisions made in the MDP model. 

Improvements can also be made to the HBDM simulation, 

though these would be more fundamental in nature. The 

next step in the HBDM code is developing more nuanced 

heuristics. These would account for the year of the program, 

the predicted future demand, and the predicted future state of 

technology. All these parameters would require an extensive 

model not only of a value function for the specific decision 

maker but of the decision maker's beliefs. 

In future studies, the results from the MDP tool can be input 

into the HBDM tool to compare results and iterate the HBDM 

process. 

Finally, an interesting target for future research might also 

include accomplishing a sensitivity analysis of program value 

to the module cost and schedule distributions - seeking 

to identify cost and schedule accuracy (distribution width) 

regimes in which benefits of technology upgrades in a frac­

tionated mission architecture may be realizable. 

6. CONCLUSIONS 

We present two complementary analysis models to analyze 

the effect of programmatic management decisions on the 



distribution of net present value of a fractionated satellite 

constellation. We develop as inputs for both codes uncer­

tainty models concerning launch success, module failures, 

build times and costs, all of which influence the success 

of a mission architecture. The first approach, Heuristics 

Based Decision Making (HBDM), takes into account these 

uncertainties and through simulation attempts to find the best 

set of decision rules. The second method, a Markov Decision 

Process (MDP) model, employs fewer uncertainty models 

and finds truly optimal decisions to prepare for and react 

to uncertainties. This analysis focuses on results from the 

HBDM model, and leaves more complete development of 

the MDP model for the near future. We hope to provide 

a framework for future development with improved model 

inputs, especially in the area of value, cost and technology­

improvement models. 

The risk of concern and focus of this analysis is the relative 

net present value distribution given different user decisions 

for a fractionated satellite mission. We use a Department of 

Defense terrestrial weather satellite program as a case study 

for analysis. Given our assumptions, we find situational 

dependence in the number of spares to maintain on the 

ground; sometimes maintaining a full subsystem is best but 

other times the best results are obtained when only certain 

critical subsystems are maintained on the ground. 

Further, we find evidence that technological evolution within 

the scope of a single fractionated satellite program, while 

possible, may not be desirable due to cost and schedule risks. 

It may instead be better to invest in certain systems more 

heavily at the outset to minimize the number of technolog­

ical upgrades necessary. Further research can expand these 

models, and test other possible benefits of the fractionated 

satellite architecture. 
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ApPENDIX 

Heuristics-Based Decision Model (HBDM) Results 

;tandard Deviation vs Mean of Net Value for different numbers of required spares 
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Figure 11. Mean and Standard Deviation of NPV for 

Number of Spares Required with Baseline Demand. 
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Figure 12. Mean and Standard Deviation of NPV for 

Number of Spares Required with Medium Demand. 
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Figure 13. Mean and Standard Deviation of NPV for 

Number of Spares Required with No Demand Increase. 

Standard Deviation vs Mean of Net Value for different technology heuristics 
The legend is [MinDemandMult MaxDemandMult] 

500 

«b 450 
� 
Q) 
" 

� 400 
-.; 
z 

� 350 
o 

� 
.> 

� 300 
E 
'" 

"0 
C 

Bl 250 

The yearly demand increase is 10% 

X 

200 1..L..----,�--c:"::":--�,----�:-:-----,�� 
3750 3800 3850 3900 3950 4000 4050 

Mean Net Value ($1c1') 

Figure 14. Mean and Standard Deviation of NPV for 

Technology Parameters with Baseline Demand. 

Standard Deviation vs Mean of Net Value for different technology heuristics 
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Technology Parameters with Medium Demand. 
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