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In this paper, we propose an extension of the Harmonic Balance method for three-
dimensional, unsteady, multi-stage turbomachinery problems modeled by the Unsteady
Reynolds-Averaged Navier-Stokes (URANS) equations. This time-domain algorithm sim-
ulates the true geometry of the turbomachine (with the exact blade counts) using only one
blade passage per blade row, thus leading to drastic savings in both CPU and memory
requirements. Modified periodic boundary conditions are applied on the upper and lower
boundaries of the single passage in order to account for the lack of a common periodic
interval for each blade row. The solution algorithm allows each blade row to resolve a
specified set of frequencies in order to obtain the desired computation accuracy; typically,
a blade row resolves only the blade passing frequencies of its neighbors. Since every blade
row is setup to resolve different frequencies the actual Harmonic Balance solution in each
of these blade rows is obtained at different instances in time or time levels. The interaction
between blade rows occurs through sliding mesh interfaces in physical time. Space and time
interpolation are carried out at these interfaces and can, if not properly treated, introduce
aliasing errors that can lead to instabilities. With appropriate resolution of the time inter-
polation, all instabilities are eliminated. This new procedure is demonstrated using both
two-and three dimensional test cases and can be shown to significantly reduce the cost of
multi-stage simulations while capturing the dominant unsteadiness in the problem.

I. INTRODUCTION

Modern Computational Fluid Dynamics (CFD) methods have reached a significant level of maturity
over the past decades: CFD tools are routinely used to provide significant insights into the most complex
engineering problems. Steady-state computations have improved to such an extent that they have become
an everyday design tool. The situation is quite different, however, for unsteady flow computations as they
typically require long integration times and a significant computational investment.

Turbomachinery flows are naturally unsteady mainly due to the relative motion of rotors and stators and
the natural flow instabilities present in tip gaps and secondary flows. Full-scale time-dependent calculations
for unsteady turbomachinery flows are still too expensive to be suitable for daily design purposes. One of the
reasons for this large cost is the fact that in practical turbomachinery configurations blade counts are chosen
such that periodicity (other than the whole annulus) does not occur, thus avoiding resonance. In order to
minimize the size of the problem that needs to be computed, various approximations are introduced. All of
these approximations can be considered to be different variations of reduced-order models. The effective use
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of these reduced-order models requires that the engineer / designer be aware of a method’s capabilities as
well as its limitations.

The key trade-off in the computation of unsteady turbomachinery flows is between the accuracy of the
method and the cost or computational efficiency with which a solution can be obtained. Highly accurate
and well-resolved models tend to be limited by the available computing power, while most reduced-order
models usually neglect a significant amount of the physics and are therefore not credible for the evaluation
of the performance and heat transfer characteristics of a turbomachine. A balance between these extremes
is clearly desirable. In order to include the unsteady effects while keeping the computational requirements
reasonable, two types of approximations can be distinguished. The first approach involves rescaling the
geometry (typically by altering the blade counts and their chords to maintain solidity) such that periodicity
assumptions hold in an azimuthal portion of the domain that is much smaller than the full annulus. A second
alternative involves the use of the original geometry but compromises the fidelity of the time integration
method.

An accurate way to solve an unsteady nonlinear multi-stage, multi-passage problem is to integrate in time
the spatially discretized flow equations. This calculation can be extremely expensive in terms of CPU and
memory requirements.1–3 One such numerical method is the Backward Difference Formula (BDF).4 This
algorithm marches the entire system of equations forward in physical time using an implicit time advancement
scheme, until a periodic steady state is reached. For typical high RPM turbomachinery problems, this
periodic steady state is arrived at only after 4-6 time periods have passed and the flow transients have been
eliminated. For multi-stage machines with more than 2 or 3 stages, this estimate is only a lower bound.

The Time Spectral method5 is a high-fidelity time integration method that has shown considerable
savings in computational costs when compared with the BDF formulation. This time-domain algorithm,
which can only be used for periodic problems, uses a Fourier representation in time and hence solves directly
for the periodic state without having to resolve numerical transients (which consume most of the resources
in a time-accurate scheme like the BDF.) The algorithm solves the full nonlinear unsteady RANS equations
hence resolving all unsteady effects. The number of Fourier modes to be resolved is input from the user: the
more modes that are included, the higher the accuracy of the calculation as well as its cost, which scales
linearly with increasing number of modes.

Another way of solving these periodic problems is to use frequency-domain methods that have been well
established for aeroelastic applications.6–9 The flow variables in these methods are decomposed into a time-
averaged part and an unsteady part. The unsteady perturbation is cast in complex harmonic form and its
amplitude and phase are solved at a given frequency.

Computational costs can be significantly lowered by using reduced-order models. The simplest of them
for turbomachinery problems is the mixing-plane approach10 where all unsteadiness is ignored. The size of
the spatial problem is reduced to a single passage in each blade row, and a steady computation is carried out
in each row. At the interface between blade rows, a circumferential average of the flow variables is passed
to the neighbor: all unsteady interactions are ignored.

The BDF, Time Spectral and Frequency Domain methods do accomodate unsteady interactions but
often include other approximations to lower computational costs. The BDF and Time Spectral methods are
frequently used in combination with scaled geometries, such that a periodic fraction of the annulus is solved
instead of the whole annulus. Frequency Domain methods often linearize the equations if the unsteady
variation is assumed to be small with respect to the time-averaged part. The size of the spatial problem is
also often contained to a single blade passage per row using phase-lag periodic conditions. These phase-lag
conditions have changed their form from the first “direct store” method proposed by Erdos et al.11 through
the time-inclination method by Giles,12 to the Fourier series based “shape correction method” by He.13, 14

They have been extensively used in turbomachinery analysis codes like MSU-TURBO.15

Ekici and Hall16 proposed the Harmonic Balance method to solve the full nonlinear RANS equations for
turbomachinery problems. The algorithm was implemented and results were discussed for two-dimensional
multi-stage compressors. The distinguishing feature of this reduced-order model (compared with the original
Harmonic Balance method17) is that only a specified set of frequencies (comprising combinations of the
neighbor’s blade passing frequencies) is resolved in each blade row. Unlike single-stage problems, in multi-
stage machinery (each blade row has more than one neighbor), this would amount to resolving frequencies
that are not multiples of a single fundamental frequency. At the interface between blade rows, the flow
variables are Fourier transformed once in time and once in the circumferential direction. These Fourier
coefficients are passed on to the neighboring blade row after non-reflecting boundary conditions18, 19 are
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applied to those frequencies that are not coupled (hence eliminating unwanted spurious frequencies), making
this a time-domain/frequency-domain method. The Fourier coefficients are then transformed back to the
physical domain in the receiving blade row. Similarly to most frequency domain methods, phase-shifted
boundary conditions are applied on a single passage computational grid. The main drawback of this method
is that it is difficult to apply it for non-radially matched grids and hence the extension to unstructured grids
is not straighforward.

In this paper, a different approach is taken. Similarly to the Harmonic Balance technique proposed by
Ekici and Hall,16 combinations of neighbor’s blade pascsing frequencies are resolved in each blade row and
phase-lagged periodic boundary conditions are applied on a single passage per row of the turbomachine. The
treatment of the sliding mesh interfaces between blade rows is, however, done purely in the time domain. For
general non-matching spatial grids at the interfaces, spatial interpolation is carried out. Furthermore, time
interpolation is also necessary because different frequencies are resolved in each blade row that differ from
those frequencies (and the consequent time steps/levels) in the neighboring blade rows. Spectral interpolation
in the presence of non-linear effects introduces aliasing errors which have to be eliminated in order to stabilize
the algorithm. These aliasing effects are eliminated by appropriate choices of the time/frequency resolution.
Such aliasing instabilities have been encountered in a similar scenario while coupling two different solvers, the
Reynolds-Averaged Navier-Stokes(RANS) and the Large-Eddy Simulations (LES) (which resolve different
time and length scales) across an interface between a compressor and a combustor.20

The details of the proposed algorithm, its advantages and limitations are explained in the following
sections. Wherever possible, the results are compared to a time-accurate solution and accuracy and cost
comparisons re presented. Results are discussed for a three-dimensional viscous single-stage case charac-
terized by a single excitation frequency and a second two-dimensional multi-stage case which accomodates
multiple excitation frequencies. The entire procedure is implemented in the SUmb solver which allows its
application to arbitrarily complex geometry and mesh configurations and to complex viscous flows with a
variety of available turbulence models. The intent of the authors is to continue to expand the knowledge
about the proposed reduced-order model and to assess its applicability to both performance and aeroelastic
problems in complex, multi-stage turbomachinery.

II. MATHEMATICAL FORMULATION

A. Governing Equations

The Navier-Stokes equations in integral form are given by
∫

Ω

∂w

∂t
dV +

∮

∂Ω

~F · ~N ds = 0,

where w is the set of conservative variables and ~F is the corresponding flux vector that includes both
convective and viscous fluxes as well as the effect of a moving control volume via mesh velocities. The mesh
velocities are incorporated since the equations are solved in a laboratory inertial frame of reference. The
semi-discrete form of this equation is obtained by discretizing only the spatial part and can be expressed as

DtU + R(w) = 0, U =

∫

Ω

wdV, (1)

where U is assumed to vary in time because of changes in the actual flow solution and due to control volume
variations that result from mesh deformations.

One of the various ways to solve Equation 1 is by casting it as a steady-state problem in pseudo-time. This
can be accomplished by using the time derivative term as a solution-dependent source term in a pseudo-time
iteration. With the addition of a fictitious pseudo-time derivative term, the advancement of the solution to
the next physical time step is achieved by marching these equations forward in t∗ until a steady-state (in
pseudo-time) has been reached. Namely, the following problem is solved

∂Un

∂t∗
+ DtU

n + R(wn) = 0, (2)

where n is the index of the physical time step.
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The next few sections discuss the different ways that can be used to discretize the time derivative term,
Dt.

B. Backward Difference Formula(BDF)

The second-order A-stable BDF4 scheme treats the time derivative term in the following way

DtU
n =

3Un − 4Un−1 + Un−2

2∆t
, (3)

where ∆t is the physical time step and n is index of the time instance. Note that the current solution that
is being computed at time step n depends only on the solution at the two previous time instances, n − 1,
and n − 2. This is a general purpose scheme and can be applied to generic unsteady problems that need
not be periodic. In our work, the advancement of the solution at each physical time step is achieved using
a number of inner multigrid iterations in t∗. Because of the co-existence of physical and pseudo time, this
solution approach has often been called the dual-time stepping BDF scheme. Since the scheme is A-stable,
the physical time step, ∆t, can be chosen to be arbitrarily large. In practice, however, Deltat is chosen such
that the relevant time scales of interest are captured accurately. Typical turbomachinery problems require
50-100 time steps per blade passing for sufficient accuracy. Combined with 25-50 inner multigrid iterations
for every time step (to reduce the magnitude of the residual sufficiently) and 4-6 revolutions to reach the
periodic state for a high RPM machine, this scheme can be very expensive. For highly-stretched meshes
typical of high-Reynolds number viscous calculations, however, this implicit scheme can be significantly less
expensive than the explicit alternative. Note that the system in Equation 1 can be solved with a variety of
different schemes. There is strong evidence that using a Diagonally-Dominant Alternating Direction Implicit
driver in combination with multigrid for the inner iterations can result in significantly faster convergence
than is achieved with the combination of multigrid and a modified Runge-Kutta scheme that we have used
in this work.

C. Time Spectral Method for Periodic Problems5,21

The Time Spectral method was developed specifically for time-periodic problems. It uses a Fourier repre-
sentation in time for the unsteady variation of the solution at each point in the computational domain. In
the case of a turbomachine, the problem is naturally periodic with a periodic sector that encompasses the
entire wheel. Depending on the actual blade counts a fraction of the entire wheel may also be used as the
periodic section. In these situations, periodic boundary conditions can be applied in time. In this section
we briefly present the fundamental idea behind the Time Spectral method. If the periodic time interval T is
divided into time levels (we introduce the notation time levels to indicate the sub-intervals of the periodic
interval) at which the solution is desired, a Fourier series can be constructed for every flow variable in every
computational cell in the mesh for the entire time period. The discrete Fourier transform of such signals
over a time period T is given by

Ûk =
1

N

N−1
∑

n=0

U∗ne−i(k 2π

T
)tn ,

where T has been divided into N equal time intervals, n is the index of the time level, and k is the wave
number. U∗ is the N−vector that describes the time variation of a single flow variable at a given location
in the computational mesh throughout the time period, i.e. U∗ = [Ut0 , Ut1 ...UtN−1

]T and Û is the vector

of Fourier coefficients, Û = [Û0, Û1, Û2, ...ÛK , Û−K , ...Û−1]
T . K is the highest wave number that N time

instances can accommodate and is equal to (N − 1)/2 for odd values of N . The Fourier transform can also
be written as a matrix-vector product, EU∗, where E is the Fourier matrix whose elements are

Ek,n =
1

N
e−i(k−1) 2π

T
tn . (4)

The inverse Fourier transform relating the U∗ and Û is simply the inverse operation using E−1 which also
has an analytic expression,

E−1
n,k = ei(k−1) 2π

T
tn . (5)
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The time derivative operator Dt applied to U∗ would amount to

DtU
∗ = Dt(E

−1EU∗) = Dt(E
−1Û) =

∂E−1

∂t
Û =

∂E−1

∂t
EU∗,

and hence

Dt =
∂E−1

∂t
E. (6)

A simpler form of this combined operator has been derived by Gopinath and Jameson21, 22 and rewrites Dt

as a matrix operator whose elements(for odd N) are

dj,n =

{

2π
T

1
2 (−1)j−ncosec(π(j−n)

N
) : n 6= j

0 : n = j.

In principle this algorithm can be applied to the true turbomachinery geometry to be solved, namely
the entire periodic section, whether it is the full wheel or a portion of it. However this would be a very
expensive proposition because the time derivative term couples all the time instances. This requires the
simultaneous storage of the solution at all N time instances at every spatial grid point, unlike the second-
order BDF scheme that only requires that the solution at the two previous time instances be stored. Hence
this algorithm is normally used in combination with a scaled geometry, so that a periodic fraction of the
annulus is solved and the storage requirements are minimized. Even after this reduction in spatial size, if
the number of time instances needed to resolve the unsteady phenomena in question is larger than O(10),
then the savings compared to solving the rescaled problem using the BDF scheme become marginal.

D. Harmonic Balance method

1. Frequencies and Time Derivative Matrix

It is common knowledge in the turbomachinery community that the dominant frequencies seen by a blade
row are those created by the passing of the neighboring blades. For instance, in an isolated single stage setup
with the stator row following the rotor row, the rotor row perceives the blade passing frequency of the stator
row and its higher harmonics and the stator row correspondingly resolves the rotor’s blade passing frequency
and its higher harmonics. Hence each blade row resolves only a single fundamental and its harmonics. In
contrast, a multi-stage case is more complicated. In such cases, each blade row is sandwiched between
neighboring blade rows and sees blade passing frequencies from all its neighbors. If the blade counts of the
neighbors are different, which is the case in most practical turbomachines, these blade passing frequencies
could be different. The sandwiched blade row then resolves various combinations (addition and subtraction
of multiples of the various frequencies) of the frequencies. This leads to a situation where there is not one
fundamental frequency but several of them in addition to their higher harmonics. A set of frequencies to be
resolved in each blade row is specified as an input to the Harmonic Balance algorithm which can then be
used to predict the unsteady flow through a turbomachine at only a fraction of the cost of the BDF scheme.

It is well known from the classic paper by Shannon23 that a minimum of 2K + 1 equally spaced grid
points are required to resolve K harmonics of the fundamental frequency. Along the same lines, we choose
to resolve a time span that is equal to the time period of the lowest frequency resolved in each blade row
and, if K frequencies are resolved in a blade row, the time span is divided into N = 2K + 1 time levels.
As mentioned before, each blade row could resolve different frequencies (depending on the blade counts of
its neighbors) and hence use different time spans and correspondingly different time instances. This is the
fundamental difference between the Harmonic Balance and Time Spectral methods: in the Time Spectral
method all blade rows solve for the same time instances and over the same time span (equal to the time
period of revolution) whereas in the Harmonic Balance method both the time instances / levels and the time
span can be different.

The governing equations are solved in a very similar way to that used for the Time Spectral method,
where the time derivative term is used as a source term and the equations are marched in pseudo-time to
a periodic steady state. The structure of Dt is explained as follows. Recall the expression for the time
derivative matrix in Equation 6, derived for the Time Spectral method. The Harmonic Balance method uses
the same form but a different definition of the Fourier matrices E and E−1.
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As mentioned before, for a periodic problem with time period T , the Time Spectral method resolves the
fundamental frequency, w1 = 2π

T
and its higher harmonics. In such a case, the matrix E can be written as

(recall Equation 4)

Ek,n =
1

N
e−i(k−1)w1tn .

In the Harmonic Balance case, especially in a multistage situation, the frequencies are not integer mul-
tiples of each other and hence the matrix E takes the form

Ek,n =
1

N
e−iwk−1tn ,

and E−1 is computed from E. The expression for the time derivative term, Dt, then becomes

Dt =
∂E−1

∂t
E.

It must be noted that it is easier to first construct E−1 analytically (and hence have an analytic expression
for the derivative) and then compute E as its inverse. The various frequencies to be resolved, wk, are given
by

w = [w0, w1, w2, ...wK , w−K , ..., w−1]
T ,

where w0 is always the zeroth harmonic, w0 = 0 and the frequencies with a negative wave number are
w−k = −wk. Thus there are only K independent frequencies and hence U∗ is always real. For real U∗, one
could halve the number of variables stored and avoid the complex arithmetic. We shall use this convention
just for clarity. It is evident that once the frequencies are chosen, all other parameters including the number
of time instances, N , the time span over which solution is sought, etc., fall in place. The frequencies are
specified in the following way. The kth frequency resolved in blade row j is given by,

wrowj
k =

nRows
∑

i=1

nk,iBi(Ωj − Ωi). (7)

Here Bi is the blade count of the ith blade row and Ωi, the rotation rate of the ith blade row. Ω = 0 for
stators. nk,i takes on integer values that are specified as an input to the solution procedure by the user.
Hence K sets of combinations are specified for K frequencies. A few points can be noted from this equation.
Only neighbors contribute to the frequencies considered by a blade row. A neighbor which is stationary with
respect to a blade row does not contribute to its temporal frequency.

2. Periodic Boundary Conditions

In the previous section we have shown how we contained the problem size by reducing the time span over
which the solution is sought. In this section, we present the way in which we use a computational grid that
spans only one blade passage per blade row compared with the periodic sector that was required by the
Time Spectral method.

Since, in principle, we do not have a periodic sector anymore, the azimuthal boundaries of a blade passage
no longer satisfy periodic boundary conditions. We will modify the boundary conditions in a manner similar
to the phase-lagged condition,11, 12 which states that

U(θ, t) = U(θ + θG, t′), (8)

where t′ = t−δt and δt is related to the inter-blade phase angle. In other words, the flow field at an azimuthal
distance shifted by the blade gap (θG), can be generated from the computed flow field at a different time.

Expanding the flow variables in the form of a Fourier series both in time and the azimuthal direction,
one can write,

U∗(x, r, θ, t) = Ũ(x, r)

N−1
∑

n=0

M−1
∑

m=0

e−i(wtn+Nθm), (9)
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where N is the vector of nodal diameters Nk, an equivalent of the wk in the azimuthal direction. These are
given in terms of the combinations specified for wk and are,

Nk =

nRows
∑

i=1

nk,iBi.

The nodal diameters are another way of representing the δt in the phase-lagged condition (Equation 8).

Equation 9 can be rewritten in terms of the Fourier coefficients Û as,

U∗(x, r, θ, t) = Û(x, r, θ)

N−1
∑

n=0

e−iwtn . (10)

Comparing equations 9 and 10,

Û(x, r, θ) = Ũ(x, r)
M−1
∑

m=0

e−iNθm ,

and hence,

Ûk(x, r, θ + θG) = Ûk(x, r, θ)e−iNkθG .

This modified periodic boundary condition is applied to the upper and lower azimuthal boundaries of a single
blade passage and relates the temporal Fourier coefficients at two azimuthal locations shifted by the blade
gap.

3. Sliding Meshes and Multistage Coupling

In this section, we discuss how information is passed from one blade row to its upstream or downstream
neighbor through the use of sliding mesh interfaces. In the case of the Time Spectral and BDF schemes,
the unsteady solution at the exact same time instances was computed in each blade row. If the whole wheel
was simulated, there was always a donor cell in the adjoining blade row. When only a periodic fraction of
the annulus was solved for and due to relative motion of the blade rows, it is possible that a physical donor
does not exist on the neighbor’s side and the donor’s information was generated using periodic boundary
conditions. These interpolation procedures, although complicated by the parallel decomposition of the solver,
were relatively straightforward.

The situation in the Harmonic Balance method is more complicated. First of all, just like in the Time
Spectral case, the flow field in the neighboring blade row must often be generated using the modified pe-
riodic boundary conditions discussed in the previous subsection. Secondly, as mentioned earlier, different
frequencies are resolved in adjoining blade rows and hence solutions at different instances in time are sought
in these rows, i.e. the nth time instance in rowi and rowi+1 need not correspond to the same physical time.
Consequently the donor’s information has to be generated at both the spatial location and physical time
corresponding to the receiver’s cell.

In the original implementation of the Harmonic Balance method16, 19 this coupling was done in the
frequency domain. On an interface, the flow variables U∗ on the donor blade row side are Fourier transformed
in time to get Û (Equation 2) at each azimuthal location. Since azimuthal grid lines need not match across
the interface, another Fourier transform was performed in the θ direction to get Ũ . Assuming radially
matched grid lines, these coefficients were transferred to the receiving blade row after applying non-reflecting
boundary conditions18 to eliminate spurious reflections due to frequencies that were not included in the
specified frequency set. Using the basis set of wk and Nk on the receiver’s blade row side, U∗ was computed
from the Fourier coefficients.

In the current version of the algorithm, we choose to couple adjoining blade rows purely in the time
domain, making it a pseudo-spectral method. This choice was made to avoid the use of complex arithmetic
and to re-use the interpolation machinery already coded in the SUmb solver. The flow field on the donor side
needs to be generated for all the times corresponding to the receiver side. This is done using trigonometric
interpolation in time. The simplest way to do this is to work with the Fourier coefficients,

U∗(treceiver) = Ē−1EU∗(tdonor),
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where

Ek,n =
1

N
e−iwk−1tdonor

n ,

but,

Ē−1
k,n = eiwk−1treceiver

n .

Note that at these interpolated times, the azimuthal location of the physical donor need not match with the
receiver and hence has to be generated using the modified periodic boundary conditions. This situation has
been discussed earlier in the paper.

During interpolation and exchange of basis sets between blade rows, higher frequencies are generated.
On a grid with N = 2K + 1 time points, only K frequencies can be captured. Higher frequencies alias onto
the lower frequencies and corrupt the information present in the basis set. Once corrupted, there is no way
to get rid of these spurious frequencies. This aliasing instability worsens with time and can render the entire
scheme unstable. This form of instability has been studied in great detail in the field of spectral methods
and is typical of pseudo-spectral methods. One of the conventional ways of dealiasing is by using Orszag’s
“Two-Thirds Rule”.24 The essence of the method is to capture these higher frequencies using a longer stencil
and then ”filter” them out. i.e., in order to capture K frequencies, instead of using 2K + 1 points, we use
3K + 1 points. In this way the higher frequencies will be captured in the last K wave numbers, without
corrupting the smaller wave numbers. The coefficients of the last K Fourier coefficients are then set to zero
(zero padding) before transforming back to physical space.

Solving for N = 3K+1 time instances in all blade rows and at every spatial grid point in order to avoid the
aliasing problem at the interface, might be unnecessary. It was also shown by van der Weide, Gopinath and
Jameson5 that using N > 2K + 1 introduces additional zero eigenvalues for the time derivative term. These
could be responsible for odd-even decoupling between the time instances and cause instability problems,
especially in high RPM turbomachinery cases.

Instead, we use more than 2K + 1 time instances only at the interface for interpolation purposes. Time
interpolated data from the donor side is requested not at 2K+1 time instances (corresponding to the receiver
side), but at twice that many instances: one extra time instance between every two time instances for which
the solution is calculated. These half-way intermediate points are chosen just for ease such that the original
time instances can be used and equally spaced points can be used for the Fourier transform while keeping
the overall time span the same. According to the two-thirds rule, K more time instances would suffice to
capture the higher frequencies. The spurious higher frequencies can now be captured on these 2(2K + 1)
time instances without corrupting the lower wave numbers. The data on the receiver side now has to be
filtered such that only the 2K + 1 frequencies we are interested in are used for the rest of the computation.
Zero padding is done by multiplying U∗ with the matrix E which consists of only the lower frequencies, then
transforming back to physical space to get the filtered data. Hence,

U∗

filtered = E+EU∗

unfiltered, (11)

where U∗ is of length 2(2K + 1). Thus E is not square anymore: its size is (2K + 1) × 2(2K + 1), i.e., it is
evaluated at 2(2K+1) time instances but includes only 2K+1 frequencies wk. Hence E+, the pseudo-inverse
of E, replaces E−1 in Equation 11. Note that E+E on this extended stencil is not the identity matrix, I
but is equivalent to the zero padding operation.

III. RESULTS

In this section, we present results for two test cases computed using the Harmonic Balance method
that has been discussed in this paper. The first one, a single-stage case, is the three-dimensional NASA
Stage 35 compressor rig, while the second one, Configuration D, is a two-dimensional model of a multi-stage
compressor geometry.

The flow solver used in this work is SUmb (Stanford University multi-block), a compressible multi-
block URANS solver developed at Stanford Univeristy during the Department of Energy’s ASC (Advanced
Simulation and Computing)25 Program. SUmb uses a cell-centered finite volume formulation and a variety
of central-difference and upwind schemes. In this work, the inviscid fluxes are computed using a central
difference scheme augmented with a standard scalar formulation for the artificial dissipation terms.26 The
viscous fluxes are computed using central differencing. Convergence is accelerated using a standard geometric

8 of 20

American Institute of Aeronautics and Astronautics



multigrid algorithm in combination with an explicit multi-stage Runge-Kutta scheme. Several different
turbulence models are available in SUmb. For our viscous test case, the NASA Stage 35 compressor rig,
we use the one-equation Spalart-Allmaras27 turbulence model. The turbulence equations are solved in a
segregated manner from the mean flow using a Diagonally-Dominant Alternating Direction Implicit (DD-
ADI) discretization28 as the basic iterative method.

A. NASA Stage 35 Compressor29

This low aspect ratio transonic compressor has 36 rotor blades rotating at 17,119 RPM (at its operating
point) and 46 stator blades. The geometry that is used for the Harmonic Balance dcomputations consists of
a single blade passage per blade row and is depicted in Figure 1. The computational mesh has 8 blocks and
a total of 1,842,176 cells. A turbulent viscous grid is used and the spacing normal to the viscous boundaries
is such that the maximum y+ value is of the order of O(1). Uniform inflow boundary conditions are applied:
the flow is assumed to be axial at the inlet and a total pressure of 101.3kPa and a total temperature of 288K
are specified. An outlet static pressure of 101.3kPa is also prescribed.

X

YZ

Figure 1. Multiblock structured mesh of the NASA Stage 35 Compressor used for the HB computation(Every
alternate grid line shown for clarity)

The NASA Stage35 test case is a single-stage case with just one rotor blade row followed by a single
stator blade row. Hence, the frequencies resolved in the rotor are the blade passing frequency of the stator
and its higher harmonics while those resolved in the stator are the blade passing frequency of the rotor and
its higher harmonics. Thus if K = k frequencies are resolved in this computation in both the rotor and
stator blade passages, the values taken by nk,i in Equation 7 can be seen in Table 1. For this test case, we
have performed computations for values of K =1,2,3,4 and 5 frequencies to assess the convergence of the
Harmonic Balance procedure as the number of retained frequencies is increased.

n Rotor n Stator

1 1

2 2

3 3

. .

. .

k k

Table 1. Frequency Combinations for the Single Excitation Frequency case
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Figures 3(a) and 3(b) depict the instantaneous pressure and entropy distributions on a surface at constant
radius(from the axis of the rig) halfway between the hub and the case using 4 frequencies. The multiple
passages shown in this and subsequent Figures have been post-processed from a computation using only one
blade passage per blade row to facilitate the interpretation of the output. The entropy distribution clearly
shows the wakes from the rotor impinging on the stator, an effect that is completely lost in the mixing plane
solution shown in Figure 2(b). A strong shock is seen in the rotor blade row that leads to flow separation due
to shock wave-boundary layer interaction. This effect is clearly seen in the large increase in the value of the
entropy in the suction side of the blade. When the corresponding wake impinges on the suction side of the
stator blade, a complex unsteady flow field results. Near the casing a large separation bubble is observed,
much larger than the mixing plane solution predicts. Figures 4(a) and 4(b) show this three-dimensional
effect. They depict entropy contours at two other surface locations at constant radii that surround the
location of the original Figure. The wakes themselves rotate as they move through the stator passages, an
effect caused by the velocity difference between the suction and pressure sides of the blades.

(a) Pressure Distribution (b) Entropy Distribution

Figure 2. NASA Stage35 compressor: pressure and entropy distribution on a surface at constant radius half
way between the hub and the casing(R=8.5) using a Mixing Plane computation

Figures 5(a) and 5(b) show the variation of the magnitude of the force and the torque on the rotor blade
computed using increasing values of K. The force and torque are plotted as a function of time over a time
span equal to the time period of the lowest frequency resolved (namely, the blade passing of stator). These
Figures show that 3 harmonics are able to predict the force on the rotor blade quite well since there is hardly
a difference with the computations that include 4 and 5 harmonics. Similarly Figures 6(a) and 6(b) show the
force and torque variations on the stator blade. The exact resolution of the forces and moments on the stator
requires 4 frequencies: a higher frequency content than for the rotor row. This is because the downstream
stator blade row resolves the blade passing of the rotor and this predominantly consists of the wakes that
run downstream from the rotor. This wake further propagates through the stator passage stretching and
rotating, complicating the flow field.

The force variation plots also show the steady force predicted by the mixing plane technique. The force
and torque on the rotor blade predicted by the mixing plane method are fairly close to the Harmonic Balance
solution at t=0. This is also evidenced in the instantaneous pressure and entropy distribution. Except very
close to the interface between the two blade rows, the solution in the rotor blade row at t=0 is well captured
by using just the mixing plane procedure (Figures 2(b) and 3(b)). However, this is not the case with the
stator blade row. The unsteadiness in the stator row is directly influenced by the upstream rotor and hence a
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(a) Pressure Distribution (b) Entropy Distribution

Figure 3. NASA Stage35 compressor instantaneous pressure and entropy distribution on a surface at constant
radius half way between the hub and the casing(R=8.5) using the Harmonic Balance Technique(K=4)

(a) Entropy Distribution(R=8.0) (b) Entropy Distribution(R=9.0)

Figure 4. NASA Stage35 compressor instantaneous entropy distribution at two different surface loca-
tions(R=8.0 and R=9.0) using the Harmonic Balance Technique(K=4)
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mixing plane solution is insufficient to capture its features. Notice that in all cases the mixing plane solution
is not necessarily representative of the average of the unsteady solution as it does not contain any of the flow
features that lead to the unsteady variation. The errors in the force and torque values are anywhere between
2-5% with the larger errors found in the stator blade. This level of error may or may not be significant
depending on the objective of the calculations being performed. Note also that although 3 and 4 harmonics
are required in the rotor and stator to resolve the values of forces and moments accurately, even the use of a
single harmonic would bring these errors to well within a half a percentage point. This brief discussion simply
goes to illustrating the point that the Harmonic Balance method being proposed is indeed a reduced-order
model where the accuracy of the computation can be traded against its cost. However, for computations
that are strongly dominated by a small set of frequencies, relatively crude reduced-order models may lead
to highly-accurate simulations.
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(a) Magnitude of Force variation on Rotor Blade
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(b) Torque variation on Rotor Blade

Figure 5. NASA Stage35 compressor force and torque variation on rotor using Harmonic Balance
method(various number of frequencies). Plotted as a function of time spanning one time period of stator
passing.
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(a) Magnitude of Force variation on Stator Blade
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(b) Torque variation on Stator Blade

Figure 6. NASA Stage35 compressor force and torque variation on stator using Harmonic Balance
method(various number of frequencies). Plotted as a function of time spanning one time period of rotor
passing.

Computations on a scaled 1-1 configuration with 36 rotor blades and 36 stator blades were performed
using the Time Spectral method and were presented in an earlier paper.5 A time convergence/resolution
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study had shown that the rotor required 7 time instances (the equivalent of 3 frequencies) to produce accurate
results. This is consistent with our observations in this work. For the stator, our previous work using the
Time Spectral method required at least 11 time instances (5 frequencies) for time convergence. Although
very much consistent with our observations here, the Time Spectral method appeared to require slightly
more time instances. It should be noted, however, that in that work a scaled geometry (and hence a different
problem) was being solved for.

The convergence history of the residuals for the Harmonic Balance calculations are shown in Figure 7.
The mixing plane method is used to provide an initial solution for the Harmonic Balance method that uses
K = 1 frequency. For the higher frequency cases, the ideal initial condition would be the interpolated
solution from the lower frequency content case. This option hasn’t been implemented yet and hence the
solution at the first time instance is rotated to obtain the initial guess for the higher frequencies.

Iter
0 5000 10000 15000 20000 25000

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Density
X-Momentum
Y-Momentum
Z-Momentum
Energy

Mixing
plane

1 Mode 2 Modes 3 Modes 4 Modes 5 Modes

Figure 7. NASA Stage35 Test Case: Convergence History using various number of frequencies.

The Harmonic Balance computations were performed on a 64 bit 3.6GHz Pentium Linux cluster with
an Infini-band interconnect. The K=1 computation required a total of about 350 CPU hours to converge
5 orders of magnitude in all residuals. The CPU time of the other computations (with higher values of K)
scaled linearly with increasing number of frequencies. A comparable BDF computation could be performed
on half the annulus (18 rotors and 23 stators) and hence is about 20 times the size of the problem currently
solved in the Harmonic Balance method. At least 50 physical time steps per blade passing and about 50
multigrid iterations per time step would be required in combination with 3-4 periodic revolutions for a
periodic state to be arrived at. On the same Linux cluster, this would cost an estimated 150,000 CPU hours.
This clearly suggests a two-order of magnitude savings in CPU time for the Harmonic Balance method over
a time-accurate BDF scheme.

B. Configuration D: two-dimensional multistage compressor

This model two-dimensional compressor geometry has 5 blade rows. The flow parameters for this geometry
are specified in Ekici and Hall.16 For our present work, we will use a geometry consisting of the middle three
blade rows, a stator followed by a rotor and another stator. Their pitches are in the ratio 1.0:0.8:0.64. The
grid consists of 3 blocks and a total of 18,432 cells (see Figure 8). Euler computations were performed on
this grid and hence only acoustic and vortical interactions between the blade rows were observed. Note that
all results presented for this case are in non-dimensional units; the lengths are non-dimensionalized by the
chord of the rotor blade, velocities by the relative inflow velocity to the rotor blade row and the pressures
by the dynamic pressure at the inflow of the rotor blade row.

As before, a mixing plane computation is used as the initial condition for the Harmonic Balance method.
The two stators do not move relative to each other and have only one neighbor, the rotor, and hence
resolve only the blade passing of the rotor and its higher harmonics. On the other hand, the rotor has two
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X

Y

Z

Figure 8. Multiblock structured mesh of Configuration D(middle three blade rows) used for the HB compu-
tation(Every alternate grid line shown for clarity)

neighbors with different pitches, and hence resolves frequencies that are combinations of the two stators
blade passings. A typical frequency combination table is shown in Table 2. Figures 9(a), 9(b) and 9(c)
show the instantaneous pressure distribution computed using K=2(BPS1 (blade passing of Stator1) and
BPS2 (blade passing of Stator2)), K=4(BPS1, BPS2, BPS1+BPS2 and BPS1-BPS2 ) and K=7(BPS1,
BPS2, BPS1+BPS2, BPS1-BPS2, 2*BPS1, 2*BPS1-BPS2 and 2*BPS1+BPS2 ) respectively. Again, the
solution on adjacent passages within the same blade row have been post-processed using the single passage
solution for easier understanding of the output. Observe that using only the frequencies corresponding
to the blade passing (K=4), the macroscopic features are already captured. Increasing the number of
frequencies obviously improves the quality of the solution. The solution across the blade row interface is
slightly discontinuous. This is to be expected since adjoining blade rows use different basis sets and resolve
only a subset of all the frequencies that the blade rows should resolve.

Information about all the frequencies that need to be resolved can be obtained from a time-accurate
calculation using the BDF scheme on the true geometry (in this case a fraction of the wheel with 16 Stator1,
20 Rotor and 25 Stator2 blade passages.) The pressure distribution from such a solution is shown in
Figure 9(d) at the same instance as in Figures 9(a) or 9(b) or 9(c). Again, comparing the solution from the
Harmonic Balance method, the macroscopic features are well captured while obtaining a solution at fraction
of the cost.

This BDF computation required 50 time steps per blade passage of Stator2 and 25 inner multigrid
iterations per time step. Three revolutions were necessary to reach periodic state as shown in Figure 10.
This figure shows the convergence of the magnitude of the force to a periodic state (every 25th physical time
step is plotted and hence this Figure is not an accurate representation of the resolved frequencies). The
forces on the two stators suggest the presence of a dominant frequency that is not as obvious on the rotor.
The force on the rotor is, of course, periodic with the time period of the annulus. The frequency content of
this force variation over the time period is shown in Figure 12. As examined in Figure 10 the two stators
resolve only one fundamental frequency, the rotor blade passing, whereas the force on the rotor consists of
a multitude of frequencies, not necessarily multiples of each other. A few dominant frequencies are pointed
out in the figure as combinations of the two stators blade passings. Note that the most dominant ones are
BPS1 and BPS2 which are the ones resolved in the K = 2 computation.

Figures 11(a) and 11(b) plot the force variation on the rotor blade as computed by the BDF scheme and
by the Harmonic Balance technique using K =2, 4 and 7 frequencies. Only a fraction of the time period of
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(a) K=2 (b) K=4

(c) K=7 (d) BDF

Figure 9. Configuration D: Instantaneous pressure distribution computed using Harmonic Balance
method(various number of frequencies) and the time-accurate BDF scheme.
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Case n Stator1 n Rotor n Stator2

K=2 1 1 0

0 2 1

K=4 1 1 0

0 2 1

1 3 1

1 4 -1

K=7 1 1 0

0 2 1

1 3 1

1 4 -1

2 5 0

2 6 -1

2 7 1

Table 2. Frequency Combinations for the Multiple Excitation Frequency case

the whole annulus has been plotted for clarity (hence, the forces are not periodic with the time span plotted).
It is observed that all the Harmonic Balance calculations predict the forces within 10% of the BDF solution,
regardless of the frequency content retained. Time convergence is obtained when the number of frequencies
in the specified set is increased (K = 7 is able to capture most of the deviations off the mean quite closely
to the BDF solution, see Figure 11(b)). For the case of K = 7, the maximum errors are of the order of 2-3%
only.

On the same Pentium Linux cluster used to run the Stage 35 test case, the BDF computation for this
Configuration D test case required about 290 CPU hours. While the Harmonic Balance technique using
K = 7 frequencies converged 7 orders of magnitude in 33 CPU hours. This clearly indicates an order of
magnitude savings in CPU time while maintaining reasonable accuracy. It is almost futile to perform a time
accurate calculation like this one to predict the dominant frequencies for a viscous three-dimensional practical
multi-stage turbomachine. We have performed this BDF computation on a relatively small problem only to
illustrate the typical frequencies present in turbomachinery problems. We have shown that the dominant
frequencies are combinations of the blade passing of the neighboring row and hence justify the choice of
frequencies in the Harmonic Balance method.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the Harmonic Balance method so that three-dimensional unsteady Euler
and RANS multi-stage turbomachinery calculations can be peformed using a purely time-domain method.
This is done while maintaining accuracy and keeping computational costs low. Further reductions in cost
can be made available by small sacrifices in the required accuracy of the computation. Costs are kept low
by using a Fourier representation in time such that a periodic state is directly reached without resolving
transients. The spatial size of the problem is drastically reduced by using a single passage per blade row
for the computational grid. Accuracy is maintained by choosing to resolve only the dominant frequencies
of all blade rows (essentially the blade passing frequencies of its neighbors). A set of specified frequencies
are resolved in each blade row and this set can be customized by the analyst / designer based on a trade-
off between accuracy and computational cost. Interaction between blade rows is done via sliding mesh
interfaces where we perform both spatial and spectral time interpolations. Nonlinear effects in combination
with spectral interpolation give rise to aliasing errors which have been treated properly to ensure the stability
of the computation at these interfaces. The coupling across the sliding mesh interfaces is done purely in the
time domain such that an already existing code, SUmb, can be readily used.

For a simple Euler calculation on a two-dimensional compressor geometry, a cost comparison between
the Harmonic Balance method and the time- accurate BDF scheme showed an order of magnitude savings
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Figure 10. Configuration D using BDF: Force variation on the three blades as the BDF scheme resolves
transients to reach periodic state(Plotted once every 25 physical time steps)
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Figure 11. Configuration D using BDF and HB: Force variation on the rotor computed using the BDF scheme
and compared with the HB computations using various frequency sets.
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in CPU requirements. Estimates from a viscous calculation on the NASA Stage 35 compressor case yield
two orders of magnitude savings for the Harmonic Balance method in comparison with a BDF solution. For
more complicated test cases with many more stages and more severe unsteady effects, the Harmonic Balance
technique promises higher savings.

We have shown results for a two-dimensional Euler case characterised by multiple excitation frequencies
and a three-dimensional RANS case using a single excitation frequency. Both these cases have looked at
acoustic and wake interaction effects. In the future, combinations of frequencies from blade passing, wake
interaction and/or aeroelastic deformation could be studied. Both the test cases in this paper, have had
only immediate neighbors. It would also be interesting to study the effect of blade passing of a distant
neighbor, since a practical turbomachine almost always has many stages and such interaction sometimes
occur (although they are not always significant). The current implementation of the algorithm can be used
as is, since only the appropriate frequency sets need to be specified.

As the number of stages is increased, a reduced order model like the one we have proposed would not be
well suited if a very high fidelity solution is sought, unless a very large number of frequencies are resolved. In
such a case, a quick calculation can be done where only the immediate neighbor’s blade passing frequencies
are resolved. This solution could then be provided as an initial guess to a time-accurate method so that a
high quality periodic solution can be obtained much faster.
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